
Cryptographic Techniques for Privacy Preserving

Identity

John Bethencourt

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-58

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-58.html

May 13, 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Cryptographic Techniques for Privacy Preserving Identity

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Berkely,Electrical Engineering and Computer
Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Currently, people have a limited range of choices in managing their identity online. They can use their real
name or a long-term pseudonym, thereby lending context and credibility to information they publish but
retaining no control over their privacy, or they can post anonymously, ensuring strong privacy but lending
no additional credibility to their posts. In this work, we aim to develop a new type of online identity that
allows users to publish information anonymously and unlinkably while simultaneously backing their posts
with the credibility o ered by a single, persistent identity. We show how these seemingly contradictory goals
can be achieved through a series of new cryptographic techniques. Our consideration of the utility of
persistent identities focuses on their ability to develop reputation. In particular, many online forums
include systems for recording feedback from a user’s prior behavior and using it to lter spam and predict
the quality of new content. However, the dependence of this reputation information on a user’s history of
activities seems to preclude any possibility of anonymity. We demonstrate that useful reputation can in
fact, coexist with strong privacy guarantees by developing a novel cryptographic primitive we call
signatures of reputation" which supports monotonic measures of reputation in a completely anonymous
setting. In our system, users can express trust in others by voting for them, collect votes to build up their
own reputation, and attach a proof of their reputation to any data they publish, all while maintaining the
unlinkability of their actions. E ective use of our scheme for signatures of reputation requires a means of
selectively retrieving information while hiding one’s search criteria. The sensitivity of search criteria is
widely recognized and has previously been addressed through a series of cryptographic schemes for private
information retrieval (PIR). Among the more recent of these is a scheme proposed by Ostrovsky and
Skeith for a variant of PIR termed private stream searching." In this setting, a client encrypts a set of
search keywords and sends the resulting query to an untrusted server. The server uses the query on a
stream of documents and returns those that match to the client while learning nothing about the keywords
in the query. To retrieve documents of total length n, the Ostrovsky-Skeith scheme requires the server to
return data 2 of length O(n log n). We present a new private stream searching scheme that improves on
this result in several ways. First, we reduce the asymptotic communication to O(n + mlogm), where m n is
the number of distinct documents returned. More importantly, our scheme improves the multiplicative
constants, resulting in an order of magnitude reduction

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

131

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Cryptographic Techniques for Privacy Preserving Identity

by

John Daniel Bethencourt

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Dawn Song, Chair
Assistant Professor Deirdre Mulligan

Professor David Wagner

Spring 2011

1

Abstract

Cryptographic Techniques for Privacy Preserving Identity

by

John Daniel Bethencourt

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Dawn Song, Chair

Currently, people have a limited range of choices in managing their identity online. They
can use their real name or a long-term pseudonym, thereby lending context and credibility
to information they publish but retaining no control over their privacy, or they can post
anonymously, ensuring strong privacy but lending no additional credibility to their posts.
In this work, we aim to develop a new type of online identity that allows users to publish
information anonymously and unlinkably while simultaneously backing their posts with the
credibility offered by a single, persistent identity. We show how these seemingly contradictory
goals can be achieved through a series of new cryptographic techniques.

Our consideration of the utility of persistent identities focuses on their ability to develop
reputation. In particular, many online forums include systems for recording feedback from
a user’s prior behavior and using it to filter spam and predict the quality of new content.
However, the dependence of this reputation information on a user’s history of activities
seems to preclude any possibility of anonymity. We demonstrate that useful reputation can,
in fact, coexist with strong privacy guarantees by developing a novel cryptographic primitive
we call “signatures of reputation” which supports monotonic measures of reputation in a
completely anonymous setting. In our system, users can express trust in others by voting for
them, collect votes to build up their own reputation, and attach a proof of their reputation
to any data they publish, all while maintaining the unlinkability of their actions.

Effective use of our scheme for signatures of reputation requires a means of selectively
retrieving information while hiding one’s search criteria. The sensitivity of search criteria
is widely recognized and has previously been addressed through a series of cryptographic
schemes for private information retrieval (PIR). Among the more recent of these is a scheme
proposed by Ostrovsky and Skeith for a variant of PIR termed “private stream searching.”
In this setting, a client encrypts a set of search keywords and sends the resulting query to
an untrusted server. The server uses the query on a stream of documents and returns those
that match to the client while learning nothing about the keywords in the query. To retrieve
documents of total length n, the Ostrovsky-Skeith scheme requires the server to return data

2

of length O(n log n). We present a new private stream searching scheme that improves
on this result in several ways. First, we reduce the asymptotic communication to O(n +
m logm), where m ≤ n is the number of distinct documents returned. More importantly, our
scheme improves the multiplicative constants, resulting in an order of magnitude reduction
in communication in typical scenarios. We also provide several extensions to our scheme
which increase its flexibility and correspondingly broaden its applicability.

With the help of our private stream searching scheme, the proposed signatures of rep-
utation allow users to accumulate positive feedback over time and attach a proof of their
current reputation to any information they post online, all while maintaining the unlinka-
bility of their actions. Because of the unlinkability provided, the user is free to use a single
identity across all applications, thereby obtaining the most reputation. A detailed analysis
of practical performance shows that our proposals, while costly, are within the capabilities
of present computing and communications infrastructure.

We conclude our investigation into the potential for new forms of online identity with
an evaluation of what might be considered the final frontier in attacks on anonymity: the
possibility of linking posted information to its author solely through its content. Even if all
explicit forms of identity are stripped from information a user posts online, it must remain
intelligible to others to be useful. In the case of textual content, we note that the techniques
of stylometry might allow an adversary to determine the likely author of an anonymous post
by comparing it to material previously posted elsewhere. Through a series of large-scale
experiments we show that, in some cases, this is indeed possible, and that individuals who
have authored large amounts of content already online are the most vulnerable.

i

Contents

List of Figures iii

List of Tables iv

1 Privacy Preserving Identity 1
1.1 Overview of Contributions . 2
1.2 Related Work and Existing Techniques . 5
1.3 Signatures of Reputation . 7
1.4 Private Stream Searching . 14
1.5 Summary . 18

2 Constructing Signatures of Reputation 19
2.1 Properties . 19
2.2 Building Blocks . 23
2.3 Algorithms . 26
2.4 Short Signatures of Reputation . 29

3 Efficient Private Stream Searching 35
3.1 Preliminaries . 35
3.2 New Constructions . 37
3.3 Analysis . 43
3.4 Extensions . 46

4 Practical Feasibility 51
4.1 Space Requirements for Signatures of Reputation 51
4.2 Private Stream Searching Performance . 52
4.3 Summary . 58

5 Internet-Scale Author Identification 59
5.1 Related Work . 60
5.2 Experimental Approach . 61
5.3 Data Sources and Features . 63

ii

5.4 Classifiers . 67
5.5 Experimental Results . 69

6 Conclusions and Future Work 75

Bibliography 77

A The Hardness of SCDH in Generic Groups 83
A.1 Generic Group Formulation of SCDH . 83
A.2 Formal Game . 84
A.3 Real Game . 85

B Proofs for the Signature of Reputation Scheme 87
B.1 Unforgeability of the Signature Scheme . 87
B.2 IK-CPA Security: Definition and Proof . 90
B.3 Definitions and Proofs for the Unblinded Scheme 91
B.4 Proofs for the Full Scheme . 94
B.5 Proofs for the Space Efficient Scheme . 110

C Proofs for the Private Stream Searching Scheme 113
C.1 Singularity Probability of Pseudo-random Matrices 113
C.2 Bounding False Positives . 114
C.3 Semantic Security . 115

D Details of the Stylometric Features 117
D.1 List of Function Words . 117
D.2 Additional Information Gain Results . 118

iii

List of Figures

1.1 One-time pseudonyms and voting . 7
1.2 Retrieving votes . 8
1.3 Signing and verification . 9

2.1 The Setup, GenCred, and GenNym algorithms 31
2.2 The Vote algorithm . 32
2.3 The SignRep algorithm . 33
2.4 The VerifyRep algorithm . 34

3.1 The Query algorithm . 37
3.2 The Search algorithm . 39
3.3 The Extract algorithm . 41

4.1 Signatures of reputation with large numbers of votes 53
4.2 Server storage and server to client communication 55

5.1 Sample parse tree produced by the Stanford Parser 65
5.2 Information gain of each feature and sample values for one feature 67
5.3 Post-to-blog matching results with three posts 70
5.4 Blog-to-blog matching results . 70
5.5 Post-to-blog matching with limited feature sets 71
5.6 Post-to-blog matching with one post . 73
5.7 Post-to-blog matching results by amounts of labeled content 73

iv

List of Tables

1.1 Asymptotic characteristics of private stream search constructions 17

4.1 Space usage of signatures of reputation . 52
4.2 Encrypted query size . 54
4.3 Server processing time . 56
4.4 File recovery time . 57

5.1 Stylometric feature set . 64
5.2 Top ten features by information gain . 66

v

Acknowledgments

A number of individuals and institutions contributed directly and indirectly to the work
presented here. First, I owe a great deal of gratitude to my advisor, Dawn Song. For six
years, her ideas have provided me with fertile ground for research. In her role as my advisor,
I couldn’t have asked for more: always ready with guidance, yet willing to step aside when I
wished to explore on my own. Brent Waters deserves similar recognition; he has effectively
been a second advisor to me. Among my other collaborators, I would also like to single out
Elaine Shi for my thanks, as her help was especially crucial to the success of this work.

I am grateful to David Wagner and Deirdre Mulligan for agreeing to serve on my com-
mittee with Dawn. If you have met either of them, you are no doubt aware of their unusually
kind and helpful dispositions—I can only hope that others do not exploit their generosity
excessively.

I am very fortunate to have had the privilege to study and conduct research at the
University of California in Berkeley and at Carnegie Mellon University, where I began my
graduate studies before moving with my advisor to Berkeley. I am also grateful for the
support I have received from the National Science Foundation and the Department of Defense
in the form of graduate fellowships.

1

Chapter 1

Privacy Preserving Identity

Our increasingly connected world offers an ever broadening array of ways to share infor-
mation. Unlike the web users of ten years ago, today’s users can make additions to most
everything they can consume. In addition to the newer forms of communication offered by
wikis and social networks, most conventional websites now include commenting facilities.
While the increase in opportunities for public participation has obvious benefits, it also
presents users with new challenges in managing their identity and corresponding threats to
their privacy. Currently, users have three choices when attaching their identity to infor-
mation they publish online: they can use their real name, a pseudonym, or nothing at all,
posting anonymously.

A few applications require or encourage users to use their real name. For example, the
policy of the online edition of the Wall Street Journal includes the following statement. “The
Journal Community encourages thoughtful dialogue and meaningful connections between
real people. We require the use of your full name to authenticate your identity. The quality
of conversations can deteriorate when real identities are not provided.” [85] Encouraging
thoughtful dialogue is an important goal, but in many situations this policy may not be
feasible. A message board intended as, say, a support group for victims of abuse would
significantly limit participation if it required users to reveal their real name. It is easy to
imagine many other scenarios in which a user has a strong, legitimate interest in hiding their
identity.

Posting information completely anonymously, on the other hand, helps ensure the au-
thor’s privacy but lacks the accountability provided by persistent identities. Such information
can be compared to writing found on the wall of a public restroom: its credibility is limited
to whatever might be discernible from the content itself.

Use of one or more pseudonyms (which may or may not be shared across applications)
falls between these two extremes and is the most widely used alternative. If users are able
create new pseudonyms at will, they have some flexibility in selectively linking themselves
to their previous activities. However, the tradeoff between credibility and privacy remains.
Using a large number of pseudonyms limits their utility, but a small number of pseudonyms

CHAPTER 1. PRIVACY PRESERVING IDENTITY 2

will be more easily linked to each other and to a user’s true identity.
Much privacy research to date has focused on enabling posting with total anonymity,

but the relative lack of applications used in this way suggests the importance of the benefits
provided by persistent identities. Many of these benefits may be summarized with the
observation that a persistent identity is capable of developing reputation. In addition to the
implicit reputation which exists when a user simply remembers a previous encounter with
a name or pseudonym, systems which explicitly manage various forms of reputation have
become a ubiquitous tool for improving the quality of online interactions. For example, a
user may mark a product or business review as “useful,” and these ratings allow others to
more easily identify the best reviews and reviewers. Most web message boards also include a
means of providing feedback to help filter spam and highlight quality content. In some cases,
reputation is crucial to the basic function of an application—most online auctions would not
take place in the absence of a system for feedback between buyers and sellers.

1.1 Overview of Contributions

This work aims to develop a new type of online identity that combines the best features of all
currently available options: the unlinkable nature of completely anonymous activity and the
credibility offered by a single identity with a persistent reputation. That is, we wish to allow
users to publish and retrieve information and develop a reputation that lends credibility to
their posts, all without explicitly identifying themselves or linking their actions together.

Such a system would enable a number of intriguing applications. For example, we might
imagine an anonymous message board in which every post stands alone—not even associated
with a pseudonym. Users would rate posts based on whether they are helpful or accurate,
collect reputation from other users’ ratings, and annotate or sign new posts with the collected
reputation. Other users could then judge new posts based on the author’s reputation while
remaining unable to identify the earlier posts from which it was derived. Such a forum would
allow effective filtering of spam and highlighting of quality information while providing an
unprecedented level of user privacy.

Our primary contributions are two sets of cryptographic tools which help enable such
applications: one which assists in publishing information and another which assists in re-
trieving it. Additionally, we offer an investigation into certain threats to anonymity that
may exist even if the proposed measures were to be used. We now give an overview of our
contributions in each of these three areas of research.

Unlinkable reputation. Perhaps the most challenging of our goals is the development
of a sort of anonymous reputation. It seems almost contradictory to require the ability to
judge information by the reputation of its author while simultaneously hiding the author’s
identity and preventing the author’s activities from being linked together. After all, a user’s
reputation must be derived from the history of that user’s activities.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 3

We enable this counter-intuitive situation through a new cryptographic framework we
call “signatures of reputation.” In a conventional digital signature scheme, a signature is
associated with a public key and convinces the verifier that the signer knows the correspond-
ing private key. Based on the public key, a verifier could then retrieve the reputation of the
signer. Through signatures of reputation, we aim to eliminate the middle step of identifying
the signer: instead, verification of the signature directly reveals the signer’s reputation and
convinces the verifier of its accuracy. With such a tool, a user can apply their reputation to
any data that they wish to publish online, without risking their privacy.

By formally defining this setting, we hope to spur further research into techniques for its
realization. As a first step, we have developed a construction for signatures of reputation
that supports monotonic aggregation of reputation. That is, we assume that additional
feedback cannot decrease a user’s reputation. Although some existing reputation systems
are monotonic (e.g., Google’s PageRank algorithm [73] and many of the systems used by web
message boards), one would ultimately hope to support non-monotonic reputation as well.
However, support for non-monotonic reputation is a significantly more challenging problem
which we consider to be beyond the scope of our present efforts.

In our construction, the reputation feedback takes the form of cryptographic “votes” that
users construct and send to one another, and a user’s reputation is simply the number of votes
they have collected from distinct users. Each user stores the votes they have collected, and
to anonymously sign a message with their reputation, the user constructs a non-interactive
zero-knowledge (NIZK) proof of knowledge which demonstrates possession of some number
of votes. The ability of a reputation system to limit the influence of any single user is crucial
in enabling applications to control abuse. To this end, our construction ensures that each
user can cast at most one valid vote for another user (or up to k for any fixed k ≥ 1).
Enforcing this property is a major technical problem due to the tension with the desired
unlinkability properties; we solve it through a technique for proving the distinctness of a list
of values within a NIZK. The size of the resulting signature is linear in the number of votes
present. We also provide an alternative scheme which satisfies a weaker security requirement
while using only logarithmic space.

Private searches. Complementing the ability to publish information anonymously and
unlinkably is the ability to retrieve it under similar guarantees. In particular, searches based
on one or more textual keywords have become the standard means by which users distill
relevant information from the ever increasing volumes available. Like publishing content
online, sending search criteria has privacy implications. However, many common queries
can be more directly identifying. This is unsurprising when you consider the fact that users
construct queries to retrieve information relevant to themselves, but they post content when
they think it will be relevant to others. As an extreme example, it’s a common practice to
search the web for one’s own name, which can immediately link your other queries to your
identity (e.g., via a cookie or an IP address).

CHAPTER 1. PRIVACY PRESERVING IDENTITY 4

This issue poses a problem for our proposed signatures of reputation. While our scheme
provides a means to prove possession of reputation feedback (as represented by cryptographic
tokens), the user still needs a way to retrieve the feedback that has been applied to their
posted content. Unless the user can do so without linking together their posts through their
query, the properties provided by the signatures of reputation are lost.

Fortunately, the privacy of search criteria is well suited to cryptographic protection.
While content intend for human consumption must remain comprehensible, the criteria pro-
vided to a search mechanism need only function correctly. If the search criteria can be
encrypted while still somehow allowing the search to be carried out, the privacy of the user
conducting the search can be ensured. Schemes for private information retrieval (PIR) pro-
vide exactly this capability. Traditionally, the problem of PIR is modeled as a bitstring (a
“database” fixed ahead of time) which can be queried by specifying the index of a bit. The
query is given to a server in an encrypted form and the server processes it with the bitstring
to produce an encrypted result, which the client can decrypt to obtain the specified bit. A
secure scheme for PIR ensures that the server is unable to determine which bit was retrieved.

Obviously, such a rudimentary search mechanism is too inflexible for most practical appli-
cations. Ostrovsky and Skeith have expanded this model to “private stream searching” [72].
The scheme they provide allows retrieval of fixed length documents or files rather than bits,
and they may be selected using a disjunction of search keywords selected from a predeter-
mined dictionary. Most significantly, the set of documents need not be fixed ahead of time:
an encrypted query can be applied to any number of documents as they arise, and the results
can be returned at any time. While much more flexible than standard PIR, their scheme is
inefficient. In practice, it may inflate the size of data returned by factor of about fifty.

We have developed a new scheme for private stream searching that improves on this result
in a number of ways. It is dramatically more efficient, incurring only a small overhead in the
size of the returned data (typically a factor of about three), supports retrieval of variable
length documents, and allows for distributed evaluation of searches. We also show how to
search for arbitrary strings, avoiding the need for a predetermined dictionary, although this
technique introduces the possibility of false positive matches. Given these improvements
in efficiency and flexibility, our scheme might be considered the first method for private
searching with a reasonable likelihood of being useful in a real application. In particular,
because it allows searching for arbitrary strings, it is the only scheme which provides the
means of privately retrieving reputation feedback that is necessary to use our signatures of
reputation.

A further threat to anonymity. Would these two sets of techniques be sufficient to
enable truly anonymous online communities? One threat comes to mind: the possibility of
linking posted information to its author based solely on its content. Even if all explicit forms
of identity are stripped from information a user posts online, it must remain intelligible to
others to be useful. Can the human-readable information inherent in any communication be

CHAPTER 1. PRIVACY PRESERVING IDENTITY 5

exploited to identify its author? Our third area of research provides some initial answers to
this question. Specifically, we have investigated whether the techniques of stylometry can be
applied at a sufficiently large scale to threaten authors’ privacy.

Stylometry is the study of author-correlated features of prose for the purpose of author-
ship attribution. Almost any features can be useful, from sentence length distributions, to
letter n-gram frequencies, to idiosyncrasies such as spelling errors. The goal may be to match
a text from an unknown author against a set of labeled examples (classification) or to group
multiple unlabeled texts by author (clustering). These methods have long been employed
in a literary context, when a text with unknown or disputed authorship is compared with
texts from a small number of possible authors. However, to date, little investigation has
been given to the possibility of stylometry threatening the privacy of modern Internet users.

To evaluate this threat, we assembled datasets of blog posts and simulated the task of
matching an anonymous or pseudo-anonymous blog with others (if any) from the same au-
thor. The results of these experiments demonstrate that current machine learning techniques
are perhaps surprisingly effective for large-scale authorship attribution. We also provide
some insights into the relationship between the identifiability of an author and the amounts
of labeled and unlabeled content that were posted.

1.2 Related Work and Existing Techniques

Before further describing the new techniques we have developed, we will now discuss several
areas of related work. We first survey work that helps motivate our goals. Then, for each
of the two sets of cryptographic tools described in the previous section, we discuss existing
techniques that are similar to our approach at a technical level.

Motivation. The difficulties in managing one’s identity as our lives become more con-
nected are widely recognized. Using your real name wherever identity is needed poses ob-
vious privacy risks, but there is also a growing understanding that pseudonyms provide
inadequate protection. Recent work has shown that a small amount of prior information is
often sufficient to match an individual to their pseudonym, for example, as in the case of
the Netflix Prize movie rental dataset [71]. It was shown that knowledge of only a couple
approximate movie rental dates (as might be revealed by simply mentioning what one has
watched recently) is typically enough to uniquely identify an individual in the dataset, re-
vealing their entire rental history. Work in a similar vein has shown that individuals can
easily be matched to their identifier or pseudonym in anonymized social graphs [7]. The
key failing highlighted by these examples is the fact that pseudonyms link together a user’s
activities and associations into a single history, thereby rapidly narrowing down the possi-
bilities for their identity. When enough information is linked together, seemingly innocuous
details become personally identifiable.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 6

The sensitivity of search terms in particular has also attracted attention. In 2005 the
U.S. Department of Justice caused controversy when it subpoenaed records of queries from
popular web search engines. The especially identifying nature of search terms was highlighted
again when AOL Research released a database of about 20 million search queries on the
Internet, revealing a great deal of compromising information about 658,000 AOL users,
who were often easy to identify based only on the content of their searches [3]. Note that
other privacy preserving technologies such as mix-based anonymizers [40] do not solve this
problem, since the search terms alone were enough to compromise the user’s privacy. In
general, previous research on providing anonymity has focused on lower-level networking,
while our research concerns higher-level applications and content. In this respect, the two
areas of work are complementary.

Signatures of reputation. While we are not aware of any work directly comparable to
our proposed signatures of reputation, others have explored the conflict between reputation
and unlinkability [82, 76, 81]. E-cash schemes [4, 29, 5, 26] also attempt to maintain the
unlinkability of individual user interactions, and in several cases [9, 27, 2] they have been
applied for reputation or incentive purposes. The work of Androulaki et al. [2] is particularly
close to ours in its aims. However, this and all other e-cash based approaches are incapable
of supporting the type of abuse resistance provided by our scheme because they allow a
single user to give multiple coins to another, inflating their reputation. In our scheme, it is
possible to prove that a collection of votes came from distinct users. This ability to prove
distinctness while maintaining the mutual anonymity of both voters and vote receivers is the
key technical achievement of our construction.

Schemes for anonymous credentials [28, 10, 8, 25] employ some similar techniques to those
of our constructions and share analogous goals. In fact, our signatures of reputation might be
considered a type of anonymous credential. There are two key distinctions, however. First,
proposals for anonymous credentials typically concern the setting of access control based
on trust derived from explicit authorities, whereas this work aims to support trust derived
from a very different source: the aggregate opinions of other users. Second, like e-cash based
approaches, existing anonymous credential schemes lack a mechanism for proving that votes
or credentials come from distinct users while simultaneously hiding the identities of those
users.

Our setting superficially resembles that of e-voting protocols [47, 46, 37], in that it allows
the casting of votes while maintaining certain privacy properties. However, schemes for e-
voting are designed for an election scenario in which the candidates have no need to receive
votes and prove possession of votes anonymously, among other differences, and cannot be
used to achieve the properties we require.

Private stream searching. The problem of private stream searching is essentially a vari-
ant of single-database, computationally-private information retrieval [33, 59, 24, 31], which

CHAPTER 1. PRIVACY PRESERVING IDENTITY 7

Figure 1.1: A user anonymously posts two one-time pseudonyms, each of which receives a
vote.

is in turn closely related to oblivious transfer [70, 62]. The key difference between traditional
PIR and private stream searching is that the former requires communication dependent on
the size of the entire database rather than the size of the portion retrieved. In some stream-
ing settings, a private searching scheme with communication independent of the size of the
stream or database is desirable. Another difference between the PIR and private search
settings is the fact that most PIR constructions model the database to be searched as a long
bitstring and the queries as indices of bits to be retrieved. In contrast, both our scheme and
that of Ostrovsky and Skeith allow queries based on a search for keywords within text. Both
may also retrieve pieces of data by index, however. The text associated with a block of data
in the database against which queries are matched is arbitrary, so by including strings of the
form “blocknumber:1,” “blocknumber:2,” . . . in the text associated with each block of data,
they may be explicitly retrieved by appropriate queries. There has been some consideration
of constructions supporting retrieval by keyword rather than block index in the PIR litera-
ture [32, 58, 43], but none of these systems has communication dependent only on the size
of the data retrieved rather than some function of the length of the database or stream.

We also note that private searching may seem related to the problem of searching on
encrypted data [80, 17, 45]. At a technical level, however, the two actually bear little resem-
blance. When searching on encrypted data, the data is hidden from the server, but private
searching requires that the client’s queries remain hidden and places no such requirement on
the data.

1.3 Signatures of Reputation

Having surveyed related work, in this section we continue to describe the new techniques
we have developed. The block diagrams of Figures 1.1 through 1.3 illustrate the flow of
information between the algorithms of our schemes for signatures of reputation and private
stream searching. As explained previously, the construction we have developed for signatures
of reputation supports monotonic measures of reputation, and we call the units of such

CHAPTER 1. PRIVACY PRESERVING IDENTITY 8

Figure 1.2: Eventually, the user shown in Figure 1.1 retrieves the votes by constructing an
encrypted query for the corresponding pseudonyms.

reputation “votes.” In the following discussion, we refer to each user as a vote receiver,
voter, signer, or verifier depending on their role in the specific algorithm being discussed.

To ensure receiver anonymity, a vote receiver invokes the GenNym algorithm to compute
a “one-time pseudonym” called a nym, which they attach to some content that they publish
and wish to receive credit for. A voter can then use the Vote algorithm on a nym to produce
a vote which hides their identity, even from the recipient (referred to as voter anonymity).
The voter posts the resulting vote on a public server. This voting process is shown in
Figure 1.1. To retrieve votes cast for their pseudonyms, a vote receiver performs a private
search, as shown in Figure 1.2. The algorithms involved in this process (Query, Search,
and Extract) will be discussed in the next section. After collecting some votes, a signer
runs the SignRep algorithm on a given message to construct a signature of reputation, which
must not reveal the signer’s identity (signer anonymity). We also ensure that a malicious
signer cannot inflate its reputation (reputation soundness). Figure 1.3 illustrates the signing
and verification process.

Reputation semantics. Before further describing each of these algorithms, several points
should be made regarding the interpretation of reputation within this context. First of all,
any system that allows users to increase each other’s reputations at will must somehow
limit its membership if it is to remain meaningful—otherwise malicious users could obtain
unbounded reputation by simply creating additional identities (a Sybil attack [41]). A mech-
anism to prevent or mitigate such attacks is necessary regardless of any privacy properties a
reputation system may provide.1 Since this aspect of devising a useful reputation system is
not the focus of this work, we simply assume the existence of a party termed the registration
authority (RA) which represents the system’s mechanism for limiting membership. To par-
ticipate in the system, each user must have credentials issued by RA which certify the user
as a legitimate member.

Although we describe the RA as a single party which generates user credentials, it can

1For example, today’s services often address this issue by requiring a (previously unused) mobile phone
number upon registration, to which a validation code is sent via SMS.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 9

Figure 1.3: A user signs a message while proving they have votes from two distinct users.

be distributed amongst multiple parties like the key generating server of typical identity-
based encryption (IBE) schemes [44]. While our construction requires trust in the RA for
both privacy and reputation soundness, it need only be trusted while generating credentials
and may thereafter go offline. After registering a user, it plays no further role in storing
or managing their reputation—in contrast to systems based on an online trusted party.
Note that, in our scheme, the RA is incapable of regenerating a user’s credential once it
destroys the randomness used to produce it. In this respect, users need not trust the RA as
much as an IBE key generator, which can regenerate private keys at any point. Admittedly,
the distinction between a party which is always honest and one which is only honest for
some initial period is subtle, but it is an important difference in some real scenarios. For
example, in the case of an honest RA whose servers are eventually confiscated by a law
enforcement agency, the users registered prior to that point could continue using the system
indefinitely without risking their privacy. The privacy of all users of an IBE scheme would
be compromised in that scenario. Nevertheless, devising a scheme which maintains privacy
despite an initially malicious RA is an important problem for future work. On the other
hand, relying on the honesty of the RA for reputation soundness seems inevitable, since a
malicious RA could always register phony users to create votes and inflate reputations.

At this point, one might raise the concern that, if each user has received a unique number
of votes, the reputation value itself is identifying. Clearly, there is an inherent tradeoff
between the precision of a measure of reputation and the anonymity of a user with any
specific value, as pointed out by Steinbrecher [76]. The solution is to use a sufficiently coarse-
grained reputation. In our construction, a user may prove any desired lower bound on their
reputation instead of revealing the actual value; this is accomplished by simply omitting
some votes when invoking the SignRep algorithm. In this way, our construction allow users
to implement their own policies for the precision of their reputations. For example, one
policy would be to always round down to a power of two.

Another issue to consider is the connection between a piece of content a user has posted
and the attached nym. Two abuses are possible: reposting the nym of another user with
a piece of undesirable content in order to malign the user’s reputation and reposting the
desirable content of another user with one’s own nym in order to steal the credit. The former
problem can be easily prevented by including a signature within the nym linking it to a

CHAPTER 1. PRIVACY PRESERVING IDENTITY 10

specific message. However, this is only useful in a reputation system supporting negative
feedback. Since our constructions only support monotonic reputation, we do not include
this feature. On the other hand, there is, in general, no simple way of preventing the latter
problem. Note that the problem of assigning credit does not stem from the anonymity that
we provide; it equally affects non-privacy-preserving reputation systems. In the case of audio
or video content, one way to address this would be to use digital watermarking techniques to
embed the nym throughout the content [36]. Other approaches could be based on a public
timestamping service.

Algorithms and properties. With those considerations covered, we are ready to detail
the set of algorithms that constitutes a scheme for signatures of reputation and consider the
properties we require of each. All of the below except VerifyRep may be randomized.

Setup(1λ) → (params, authkey): The Setup algorithm is run once on security parameter
1λ to establish the public parameters of the system params and a key authkey for the
registration authority.

GenCred(params, authkey) → cred: To register a user, the registration authority runs
GenCred and returns the user’s credential cred.

GenNym(params, cred)→ nym: The GenNym algorithm produces a one-time pseudonym
nym from a user’s credential.

Vote(params, cred, nym)→ vt or ⊥: Given the credentials cred of some user and a one-time
pseudonym nym, Vote outputs a vote from that user for the owner of nym, or ⊥ in
case of failure (e.g., if nym is invalid).

SignRep(params, cred, V,msg) → Σ or ⊥: Given the credentials cred of some user, the
SignRep algorithm constructs a signature of reputation Σ on a message msg using a
collection of c votes V = {vt1, vt2, . . . , vtc} for that user. The signature corresponds to
a reputation c′ ≤ c, where c′ is the number of distinct users who generated votes in V .
The SignRep algorithm outputs ⊥ on failure, specifically, when V contains an invalid
vote or one whose recipient is not the owner of cred.

VerifyRep(params,msg,Σ) → c or ⊥: The VerifyRep algorithm checks a purported
signature of reputation on msg and outputs the corresponding reputation c, or ⊥ if the
signature is invalid.

In the following chapter, we provide fully rigorous definitions for the privacy and security
properties we aim to enforce. Here, we introduce them at an intuitive level and discuss some
of the subtleties in defining them appropriately.

First, we would like to ensure that a user may produce signatures of reputation anony-
mously. Furthermore, it should be impossible to determine whether two different sig-
natures were produced by the same user. This may be defined by the following game.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 11

The challenger begins by generating the public parameters and a list of user credentials
cred1, . . . , credn. An adversary A is given access to all the credentials and may use them
to generate pseudonyms and votes before eventually printing a message msg, two indices
i0, i1 ∈ {1, . . . , n}, and two sets of votes V0, V1. The challenger flips a coin b ∈ {0, 1} and re-
turns Σb = SignRep(params, credib , Vb,msg) to A, which prints a guess b′. We say that A has
won the game if b = b′ and VerifyRep(params,msg,Σ0) = VerifyRep(params,msg,Σ1).
That is, the value of b should affect neither the reputation values of the resulting signatures
nor their validity. If the advantage (that is, the probability of winning the game minus one-
half) of every probabilistic, polynomial time (PPT) adversary A is negligible in the security
parameter, we say that the scheme is signer anonymous.

Complementing the ability to produce a signature of reputation anonymously is the
ability to receive the necessary votes anonymously. In this case, we require that a pseudonym
generated by the GenNym algorithm reveal nothing about its owner in the absence of that
user’s credential. An adversary A playing the corresponding game will select two users 1 ≤
i0, i1 ≤ n and must guess which produced the challenge nym∗ = GenNym(params, credib).
Since we allow users to identify their own pseudonyms, we cannot provide all the credentials
to A in this case. Instead, we provide A with access to an oracle which will reveal individual
credentials on demand (a “corrupt” query) or use them to produce pseudonyms, votes, and
signatures as requested. Then, to win the game, we require that A not corrupt either i0
or i1. We also require that A not request a signature from i0 or i1 using a vote that was
cast for nym∗, since the reply would immediately reveal b (the signer is ib if and only if the
reply is not ⊥). If the advantage of every PPT A in this game is negligible in the security
parameter, the scheme is receiver anonymous.

Astute readers may note that we have not properly defined what it means for a vote
to have been “cast for nym∗,” since we have no information about how the adversary may
have constructed it. To resolve this issue, the full definitions in the following chapter include
“opening” algorithms which reveal the creator of a pseudonym and the voter and recipient
of a given vote. To operate, they require a special opening key which may be generated
during setup, just as in group signature schemes. However, while this tracing is an explicit
feature of group signatures, here we use it only to establish a “ground truth” for definitional
purposes. In an actual implementation, the opening key would not be generated.

We wish to define the next privacy property, voter anonymity, to encompass the strongest
form of unlinkability compatible with the general semantics of the scheme, as we did in the
case of receiver anonymity. Doing so is more subtle in this case, however, due to the necessity
of detecting duplicate votes. Because we require a SignRep algorithm to demonstrate the
number of votes from distinct users, such an algorithm can be used by a vote receiver to
determine whether two votes cast for any of their pseudonyms were produced by the same
voter (duplicates). That is, the receiver can try to use the two votes to produce a signature
and then check the reputation of the result with VerifyRep.

In defining voter anonymity, we allow precisely this type of duplicate detection, but
nothing more. While initially this may seem like an “exception” to the unlinkability of

CHAPTER 1. PRIVACY PRESERVING IDENTITY 12

votes, in actuality, it is not only inevitable,2 but also unlikely to be a practical concern.
Although a vote receiver must be able to detect duplicate votes, we can still avoid the voting
histories we aim to eliminate. In particular, our definition ensures that in the following cases
it is not possible to determine whether two votes were cast by the same user (i.e., to link the
votes):

1. A user cannot link a vote for one of their pseudonyms with a vote for a pseudonym of
another user, nor can they link two votes for distinct pseudonyms of another user (or
two different users).

2. A colluding group of users cannot link votes between their pseudonyms, provided the
pseudonyms correspond to different credentials. Furthermore, they are not able to link
the numbers of duplicates they have observed. For example, if a user determines that
they have received two votes from one user and three votes from another, they will
have no way of matching these totals up with those of another colluding user.

In the corresponding game, A selects two indices i0, i1 ∈ {1, . . . , n} and nym and is given
vt∗ = Vote(params, credib , nym) as a challenge. As before, they are given access to the oracle
and must make a guess b′. In this case, we require that if A requests through the oracle that
the user corresponding to nym produce a signature using vt∗, then votes from both i0 and i1
must be included. Otherwise, the number of distinct votes in the resulting signature would
directly reveal b. Additionally, we disqualify A if they both corrupt the user corresponding
to nym and request a vote on nym from either i0 or i1. This is necessary because the status
of such a vote as a duplicate of vt∗ (or lack thereof) would reveal b. If every PPT A has
negligible advantage in this game, the scheme is voter anonymous.

To define the soundness of a scheme for signatures of reputation, we use a computational
game in which an adversary A must forge a signature of reputation Σ on some message msg.
We disqualify A if Σ was the reply to one of its oracle queries, and we require that Σ have
reputation strictly greater than what it could have if the adversary had used the scheme
normally. The value of the best such legitimately obtainable reputation will depend on
several things: the number of users the adversary has corrupted (since the adversary may use
their credentials to produce votes), the number of votes received from honest users via oracle
queries, and how those votes were distributed amongst the corrupted users. More precisely,
let `1 be the number of corrupted users and `2 be the greatest number of distinct honest users
that voted for a single corrupt user. Then we require that VerifyRep(params,msg,Σ) >
`1 + `2 for the adversary to succeed. If, for every PPT A, the probability of winning this
game is negligible in the security parameter, then the scheme is sound.

In some applications, a weaker version of soundness may suffice and may be desirable
for greater efficiency. One natural way to relax the definition is to specify an additional

2Allowing proofs of vote distinctness while eliminating the ability to identify duplicates could only be
possible if the notion of discrete votes is abandoned. This approach would require all votes in the system
to be aggregated into a indivisible block before they can be used to produce signatures, a vastly impractical
solution.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 13

security parameter 0 ≤ ε < 1 as a multiplicative bound on the severity of cheating we wish to
prevent. Specifically, we say that a scheme is ε-sound if a signature of reputation c convinces
the verifier that the signer must possess at least (1− ε) · c valid votes. This can be defined
as above, but using the requirement that (1− ε) ·VerifyRep(params,msg,Σ) > `1 + `2.

Highlights of our construction. The following chapter details our construction for sig-
natures of reputation and proves that it satisfies all the properties just discussed. Here, we
briefly survey some of the scheme’s technical features and underlying ideas.

Our scheme for signatures of reputation relies on a bilinear map (symmetric or asym-
metric) between prime order groups and can produce sound signatures of reputation c of
size O(c) or ε-sound signatures of size O(1

ε
log c). The proofs of the privacy and security

properties are based on the relatively standard SDH and decision linear assumptions, BB-
HSDH and BB-CDH [8], and a new constant-size, non-interactive, computational assumption
called SCDH, which we prove hard in generic groups. Additionally, the ε-sound variant of
our scheme requires the random oracle model.

Throughout our construction, we make extensive use of the Groth-Sahai scheme for non-
interactive zero-knowledge (NIZK) proofs [49], which can be used to efficiently demonstrate
possession of signatures, ciphertexts, and their relationships while maintaining unlinkability
properties. One unique (to our knowledge) feature of our construction is the use of nested
NIZKs, that is, NIZKs which prove knowledge of other NIZKs and demonstrate that they
satisfy the verification equations. This situation arises because a user’s credentials contain
a signature from the registration authority, and a user includes a NIZK proof of the validity
of this signature when they cast a vote. When a signer later uses the vote, they include
this NIZK within a further NIZK to demonstrate the validity of the votes while maintaining
signer anonymity.

We give signers the ability prove the distinctness of their votes through the following
mechanism. Each user credential contains, among other components, a “voter key” v and
a “receiver key” r. A valid vote must contain a certain deterministic, injective function of
these keys: f(v, r). Thus, duplicate votes can be detected when f(v1, r) = f(v2, r). To
receive votes anonymously, a user includes in each nym an encryption of their receiver key
E(r) under their own public key. Using a homomorphism, the voter uses this ciphertext
to compute E(f(v, r)) and places it within the vote; later, the receiver decrypts this to
obtain f(v, r). To maintain signer anonymity when using a series of values U1 = f(v1, r),
U2 = f(v2, r), . . . to sign a message, the signer blinds them with a (single) exponent to
produce a list U s

1 , U
s
2 , . . ., which is included in the signature of reputation along with proof

of knowledge of the exponent. Note that U s
1 , U

s
2 , . . . will be distinct if and only if U1, U2, . . .

are.
To reduce the size of the signatures, we employ a sampling technique. Specifically, we can

achieve ε-soundness while only including a random subset of the votes of size O(1
ε
), indepen-

dent of the original number of votes. To ensure the sample is random, we require the signer

CHAPTER 1. PRIVACY PRESERVING IDENTITY 14

to first commit to the entire list of votes, then use the commitment as a challenge specifying
which must be included. To efficiently demonstrate that the correct votes were included,
we compute the commitment using a Merkle hash tree [67] and include the corresponding
off-path hashes with each vote, resulting in a final signature of size O(1

ε
log c).

1.4 Private Stream Searching

We now turn to the other primary set of techniques we have developed: improved construc-
tions for private stream searching. We begin by defining the algorithms of a scheme for
private stream searching and discussing the original scheme due to Ostrovsky and Skeith
before giving an overview of our techniques.

To use a scheme for private stream searching, a client creates an encrypted query for
the set of search terms that they are interested in, then sends the encrypted query to a
server, as shown in Figure 1.2. While the figure depicts retrieval of the cryptographic votes
necessary to construct signatures of reputation, our construction can also be used to obtain
any content of interest. After receiving the client’s query, the server runs a search algorithm
on a stream of files while keeping an encrypted buffer storing information about files for
which there is a match. The encrypted buffer is periodically returned to the client to enable
the client to reconstruct the files that have matched its query. The key aspect of a private
searching scheme is that a server is capable of conducting the search even though it does not
know which search terms the client is interested in or which files match them. Formally, we
define such a scheme as consisting of the following three algorithms.

Query(1λ, ε, S,m, n) → (query, key): The Query algorithm is run by the client to con-
struct an encrypted query. It takes a security parameter 1λ, a correctness parameter ε,
a set of search terms S ⊂ {0, 1}∗, an upper bound m on the number of files to retrieve,
and an upper bound n on their total length. From these it produces an encrypted
query and corresponding key.

Search(query, f, buf) → buf ′: After the receiving an encrypted query from the client, the
server runs the Search algorithm to evaluate the query on each file f ∈ {0, 1}∗ in the
stream, updating a buffer of encrypted results buf. For the first file, the server sets
buf = ⊥; for each subsequent file, the server uses the value returned by the previous
iteration. At any point, the buffer of results may be returned to the client.

Extract(key, buf)→ F : The Extract algorithm is then run by the client to extract the
files which matched the query from buf using key. It outputs the set of matching files
F = { f

∣∣S∩words(f) 6= ∅ }, where words is a function that returns the set of keywords
associated with a file.3

3This function will vary by application. For searching on text, it may simply split on whitespace to return
all the words in the file. For binary files, it may return associated metadata or all sequences of bytes the

CHAPTER 1. PRIVACY PRESERVING IDENTITY 15

We define privacy for a private stream searching scheme with the following game. The
adversary gives two sets of search terms S0 and S1 to the challenger, who then flips a coin
b ∈ {0, 1}, runs Query(1λ, ε, Sb,m, n), and returns query to the adversary. The adversary
then outputs a guess b′ and wins if b = b′. We say that a private searching scheme is
semantically secure if every PPT A has negligible advantage in this game.

There are a few comments to be made about the parameters m, n, and ε. First, note
that the security definition for private stream searching necessitates that the server return
the same amount of data regardless of which files (if any) matched the query. If this were
not the case, the server could easily mount a dictionary attack using the Search algorithm
to determine the exact query keywords. As a result, any scheme for private stream searching
requires an a priori upper bound on the number of files to retrieve (if we assume fixed-
length files) or their total length. If more files match or they are too long, the scheme will
fail to return them. Furthermore, all existing private stream searching schemes (ours and
Ostrovsky-Skeith) have the possibility of random failures in which not all matching files are
recoverable, even if the bounds m and n are satisfied. We include the correctness parameter
ε to specify an upper bound on the probability of such a failure and require that a scheme
use redundancy or other means to achieve the corresponding level of reliability.

The Ostrovsky-Skeith scheme. Our scheme is best understood in relation to the original
one provided by Ostrovsky and Skeith in the paper which proposed the problem of private
stream searching, so we now review its basic idea [72]. Their scheme can use any additively
homomorphic public key cryptosystem, and they suggest Paillier in particular [74, 38]. First,
a public dictionary of keywords D is fixed; only strings within this set may be used as search
terms. To construct a query for the disjunction4 of a set of search terms S ⊆ D, the user
generates a new key pair and produces an array of ciphertexts, one for each w ∈ D. If
w ∈ S, a one is encrypted; otherwise a zero is encrypted. A server processing a document
in its stream then computes the product of the array entries corresponding to the keywords
found in the document. This will result in the encryption of some value c, which, by the
homomorphism, is non-zero if and only if the document matches the query. The server may
then in turn compute E (c)f = E (cf), where f is the content of the document, obtaining
either an encryption of (a multiple of) the document or an encryption of zero.

Ostrovsky and Skeith propose the server keep a large array of ciphertexts as a buffer to
accumulate matching documents; each E (cf) value is multiplied into a number of random
locations in the buffer. If the document matches the query then c is non-zero and copies of
that document will be placed into these random locations; otherwise, c = 0 and this step will
add an encryption of 0 to each location, having no effect on the corresponding plaintexts. A

file contains if the ability to search the binary content itself is desired. In any case, words is assumed to be
public or specified in the clear within query.

4They also mention an extension allowing a single conjunction by using the BGN cryptosystem rather
than Paillier [18]. This extension can also be applied to our scheme in the same way.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 16

fundamental property of their solution is that if two different matching documents are ever
added to the same buffer location, a collision will result and both copies will be lost. If all
copies of a particular matching document are lost due to collisions then that document is
lost, and when the buffer is returned to the client, they will not be able to recover it.

To avoid the loss of data in this approach one must make the buffer sufficiently large
so that this event does not happen too often. This requires that the buffer be much larger
than the number of documents expected to match. In particular, Ostrovsky and Skeith
show that a given probability ε of successfully obtaining all matching documents may be
obtained with a buffer of size O(n log n),5 where n is the upper bound on the total length of
the matching documents. While effective, this scheme results in inefficiency due to the fact
that a significant portion of the buffer returned to the user consists of empty locations and
document collisions.

Unfortunately, our experiments have shown that this source of inefficiency is indeed
substantial. The Ostrovsky-Skeith paper did not specify explicitly state a minimum buffer
length for a given number of files expected to be retrieved and a desired probability of
success, but instead gave a loose upper bound on the length. To determine the efficiency of
their scheme more precisely, we ran a series of simulations to determine exactly how small
the buffer could be made with ε = 1

20
. The results are given in Chapter 4; in short, the data

returned is approximately fifty times as large as the files being retrieved.

Improving efficiency. We now survey the ideas behind our scheme and the improvements
obtained as a result. Our primary result is a set of techniques for improving space efficiency.
Rather than using a large buffer and attempting to avoid collisions, we allow collisions and
recover from them using additional information. Each matching document in our system is
copied randomly over approximately half of the locations in the buffer. A pseudo-random
function g (for which both client and server have the key) will determine pseudo-randomly
with probability 1

2
whether the document is copied into a given location, where the function

takes as inputs the document number (document number i is the ith document seen by the
server) and buffer location. While any one particular buffer location will not likely contain
sufficient information to reconstruct any one matching document, with high probability all
the information from all the matching documents can be retrieved from the whole system by
the client given that the client knows the number of matching documents and that the number
of matching documents is less than the buffer size. The client can do this by decrypting the
buffer and then solving a linear system to retrieve the original documents.

To do so, the client must obtain a list of the indices of the documents in the stream
which matched the query. We describe two ways of accomplishing this. The first method
(referred to as the simple metadata construction) is based on the original Ostrovsky-Skeith
construction. To employ the alternative method (referred to as the Bloom filter construc-

5Specifically, they define a correctness parameter γ and use a buffer of size O(γn). They then show that
a given success probability may be achieved with a γ that is O(log n).

CHAPTER 1. PRIVACY PRESERVING IDENTITY 17

Private stream searching scheme Storage and comm. Client reconstruction time

Ostrovsky-Skeith 2005 O(n log n) O(n log n)
Our scheme (simple metadata) O(n+m logm) O(n+m2.376)
Our scheme (Bloom filter) O(n+m log t

m
) O(n+m2.376 + t log t

m
)

Table 1.1: The two variants of the new scheme retrieve m documents while incurring only
linear overhead in terms of the total length n.

tion), the server maintains an encrypted Bloom filter that efficiently keeps track of which
document numbers were matched. The Bloom filter construction provides a compact way of
representing the set indices of matching documents and requires less space than the simple
metadata construction under some circumstances.

These techniques can improve the space efficiency asymptotically in some situations.
Specifically, our scheme achieves the optimal linear communication from the server to the
client and server storage overhead in returning the content of m matching documents with
total length n. To return the necessary metadata (primarily the indices of the matching
documents), we may use the original scheme with O(m logm) communication and stor-
age. When considering unit length (i.e., one 1024-bit group element) documents, m equals
n and our scheme then shares the same overall O(n log n) communication complexity as
Ostrovsky-Skeith. However, because our scheme decouples the logarithmic communication
factor from the document length, we improve the communication complexity for longer doc-
uments. Using the Bloom filter construction for returning the metadata requires O(m log t

m
)

communication and storage, where t is the total number of documents searched. A disadvan-
tage of this technique is a step in reconstructing the matching documents on the client with
O(t log t

m
) time complexity, introducing a dependency on the overall stream length. How-

ever, this step consists only of computing a series of hash values, which is greatly outweighed
by other costs in practice. These efficiency improvements and tradeoffs are summarized in
Table 1.1. While the asymptotic efficiency improvements are perhaps marginal, the greatest
benefits are obtained in the practical performance. In Chapter 4, we will see that the new
scheme incurs overheard of about a factor of three, an order of magnitude improvement.

Other improvements. Our scheme for private stream searching is also more flexible than
the previous work in two important ways. First, we remove the need for the predetermined
set of possible search terms D. This is crucial because many of the strings a user may want to
search for are obscure (e.g., names of particular people or other proper nouns) and including
them in D would already reveal too much information. Since the size of encrypted queries
is proportional to |D|, it may not be feasible to fill D with, say, every person’s name, much
less all proper nouns. In the case of our signatures of reputation, retrieving votes based on
the corresponding one-time pseudonyms requires searching for arbitrary binary strings and
would be impossible using a fixed dictionary.

CHAPTER 1. PRIVACY PRESERVING IDENTITY 18

We remove this limitation through a simple hash table based technique that allows any
string to be a search term. In Query, we create a new key pair as before, then create an
`-element array of ciphertexts initialized to encryptions of zero, where ` is selected based
on the correctness parameter ε. Next, we hash each search term s ∈ S and set the corre-
sponding element (h(s) mod `) of the array to an encryption of one. To process a file in
Search, the server then simply hashes its associated keywords and computes the product
of the corresponding entries in the hash table. The disadvantage of this approach is the
possibility of false positive matches due to collisions within the hash table, which cause files
to be erroneously retrieved. This possibility must be taken into account in relation to the
correctness parameter ε and the bound m on the number of matching files.

Another significant improvement we have made to the flexibility of private stream search-
ing is the addition of support for variable length documents. Previously, only fixed length
blocks had been considered, which requires setting an upper bound on the document length
and (inefficiently) treating all documents as if they are that long. In our scheme, we allow the
client to set separate bounds on the number of matching documents and their total length.
Provided both bounds are satisfied, the data may be distributed arbitrarily.

1.5 Summary

To recap this chapter, the cryptographic tools described in the previous section can be used to
create a new type of privacy preserving online identity in the following manner. Rather than
creating separate accounts for various applications under their real name or pseudonyms,
users would instead use a single set of cryptographic credentials. A registration authority
of some sort is necessary to prevent users from obtaining an unlimited number of identities
but would otherwise play no role in managing a user’s identity. With their credentials,
a user could publish information anonymously and unlinkably, attaching a new one-time
pseudonym to each post and only revealing their name or a long-term pseudonym when
specifically desired. To receive credit for the information they post, a user would register
queries for their one-time pseudonyms with the servers that host the applications they use.
These queries would be used to periodically return votes others cast for the posts and any
additional information, such as the content of replies to the posts. Our new scheme for
private stream searching allows this to take place without linking the user to the one-time
pseudonyms or the pseudonyms to each other. Using our scheme for signatures of reputation,
the user could then sign further posts with a proof demonstrating a lower bound on the
number of votes collected so far, giving the published information much of the credibility
offered by more explicit forms of identity.

In the following two chapters, we detail our constructions for signatures of reputation and
private stream searching. After that, the next two chapters explore the practical feasibility
of our proposals using current technology and the possibility of further attacks on anonymity
if they were to be used. Finally, we conclude in Chapter 6 by surveying areas of future work.

19

Chapter 2

Constructing Signatures of
Reputation

In this chapter, we provide the full details of our proposed signatures of reputation. We
begin with rigorous definitions for the properties we desire and an explanation of technical
tools from which our scheme is devised in Sections 2.1 and 2.2. In Section 2.3, we describe
the algorithms of our construction, and in Section 2.4, we explain how they can be modified
to reduce space requirements. The reader may wish to briefly review the list of algorithms
in Section 1.3 before continuing in this chapter.

2.1 Properties

The most basic property required of a construction for signatures of reputation is correctness:
the algorithms should produce the expected results when executed normally. We define this
property as follows.

Definition 1 (Correctness for signatures of reputation). Let n be a positive integer and S ⊆
{1, . . . , n}. Set (params, authkey) ← Setup(1λ) and credi ← GenCred(params, authkey),
for i ∈ {1, . . . , n}. Set nym← GenNym(params, cred1), V = { vt | vt← Vote(params, credi,
nym), i ∈ S }, and Σ← SignRep(params, cred1, V,msg), for some message msg. If the pre-
ceding implies, with probability one, that VerifyRep(params,msg,Σ) = |S|, then we say
that the scheme is correct.

In the preceding chapter, we gave intuitive descriptions of the four intended privacy and
security properties: receiver anonymity, voter anonymity, signer anonymity, and reputation
soundness. Defining these properties rigorously requires considerably more subtlety. In
particular, to ensure our definitions are well-formed, we require the existence of several
additional algorithms. Given a special “opening key” produced by an alternate version of
Setup, the two opening algorithms (which must be deterministic) reveal the users associated

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 20

with pseudonyms and votes, thereby establishing a ground truth to which we can refer when
defining the privacy and security properties. These are directly analogous to the opening
algorithm of group signature schemes. However, while opening is considered an intended
feature of group signatures, in our case the opening algorithms exist solely for the definitions
and would not be used in practice. For brevity, each of the opening algorithms is given
params and a list of user credentials cred1, . . . , credn as implicit arguments.

Setup′(1λ)→ (params, authkey, openkey): Setup′ produces values params, authkey accord-
ing to the same distribution as Setup, but also outputs an opening key openkey.

OpenNym(openkey, nym) = i: Output the index of the credential that produced nym.

OpenVote(openkey, vt) = (i, nym): Output the index of the credential and the nym from
which the vote vt was constructed.

Any scheme for signatures of reputation must provide an implementation of the above algo-
rithms that is correct according to the following definition.

Definition 2 (Correctness of opening algorithms). Let n be a positive integer and set
(params, authkey, openkey)← Setup′(1λ) and credi = GenCred(params, authkey) for
i ∈ {1, . . . , n}. Then given any i ∈ {1, . . . , n} and nym ← GenNym(params, credi), we
require that OpenNym(openkey, nym) = i. In addition, given any i, j ∈ {1, . . . , n},
nym← GenNym(params, credi), and vt← Vote(params, credj, nym), we require that
OpenVote(openkey, vt) = (j, nym). If both of these properties hold, we say that the scheme
has correct opening algorithms.

For later notational convenience, given a set of votes V , we also define the functions
OpenVoters(openkey, V) = { i | (i, nym) = OpenVote(openkey, vt), vt ∈ V } and
OpenReceivers(openkey, V) = { nym | (i, nym) = OpenVote(openkey, vt), vt ∈ V }.

Before describing the games defining each of the privacy and security properties, one
more preliminary matter must be discussed. In the games we define, the adversary may make
queries to an oracle O. The oracle is given access to a list of user credentials cred1, . . . , credn
and responds to the following four types of queries. On input (“corrupt”, i), O returns credi.
On input (“nym”, i), O returns nym← GenNym(params, credi). On input (“vote”, i, nym),
O returns vt ← Vote(params, credi, nym). On input (“signrep”, i, V,msg), O returns Σ ←
SignRep(params, credi, V,msg). In each case, O also logs the tuple on which it was queried
and its response by adding them to a set L. We will refer to the logged queries and responses
in order to state the winning conditions for each game.

Receiver anonymity. The receiver anonymity property captures the notion that a one-
time pseudonym generated by the GenNym algorithm should reveal nothing about its owner,
unless the adversary has seen that user’s credential or made a SignRep query which trivially

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 21

reveals the owner. This property may be defined by the following game, where st denotes
the internal state of the adversary.

PrRANON
A (λ) = Pr

 b = b′ ∧
Legal(i∗0, i

∗
1, openkey, L)

∣∣∣∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(i∗0, i
∗
1, st)← AOL(params); b

R←− {0, 1};
nym∗ ← GenNym(params, credi∗b); b

′ ← AOL(st, nym∗)

∣∣∣∣∣∣∣∣∣

To prevent A from winning this game through normal usage of the scheme, we make the
following requirements on its queries and challenge (i∗0, i

∗
1), which we abbreviate as “Legal.”

First, (“corrupt”, i∗0) /∈ L and (“corrupt”, i∗1) /∈ L. In other words, if an adversary must
compromise a user’s private credentials to detect their pseudonyms, we will not consider
that a failure of receiver anonymity.1 Second, for all (“signrep”, i, V,msg) ∈ L, if i ∈ {i∗0, i∗1},
we require that nym∗ /∈ OpenReceivers(openkey, V). An adversary that violates this
property is one that simply returns the challenge nym∗ (after voting for it) in a SignRep
query. The reply to such a query immediately reveals b, as expected by the semantics of the
scheme (i = i∗b iff the reply is not ⊥). Given these rules, we define receiver anonymity as
follows.

Definition 3. A scheme for signatures of reputation is receiver anonymous if, for all PPT
adversaries A, |PrRANON

A (λ)− 1
2
| is a negligible function of λ.

Voter anonymity. As explained in Section 1.3, defining voter anonymity is somewhat
more difficult than defining receiver anonymity. Because we require a SignRep algorithm
to demonstrate the number of votes from distinct users, such an algorithm can be used
by a vote receiver to determine whether two votes cast for any of their pseudonyms were
produced by the same voter (duplicates). That is, the receiver can try to use the two votes
to produce a signature and then check the reputation of the result with VerifyRep. Our
aim in defining voter anonymity is to allow precisely this type of duplicate detection, but
nothing more. The game below captures this property.

PrVANON
A (λ) = Pr

b = b′ ∧

Legal(j∗0 , j
∗
1 , nym

∗,
openkey, L)

∣∣∣∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(j∗0 , j
∗
1 , nym

∗, st)← AOL(params); b
R←− {0, 1};

vt∗ ← Vote(params, credj∗b , nym
∗); b′ ← AOL(st, vt∗)

∣∣∣∣∣∣∣∣∣

In this case, we define Legal to check the following. Let i∗ = OpenNym(openkey, nym∗).
First, if the adversary has made a query (“signrep”, i∗, V,msg) ∈ L where vt∗ ∈ V , we

1One might try to extend this definition to incorporate a forward security property ensuring pseudonyms
generated before a user’s credentials are compromised remain unlinkable (that is, by updating the credentials
after generating each pseudonym). However, this is futile: if the updated credential can still use votes cast
for old pseudonyms, then Vote and SignRep can be used to detect the old pseudonyms.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 22

require that {j∗0 , j∗1} ⊆ OpenVoters(openkey, V). In other words, the coin b should not
determine the number of distinct voters in a “signrep” query involving vt∗. Second, if
(“corrupt”, i∗) ∈ L, we require that there not exist a (“vote”, j, nym) ∈ L such that j ∈
{j∗0 , j∗1} and i∗ = OpenNym(openkey, nym). That is, if the adversary controls the receiver i∗

of the challenge vote, then they may not request another vote from j∗0 or j∗1 , since its status
as a duplicate or lack thereof would reveal b.

Definition 4. A scheme for signatures of reputation is voter anonymous if, for all PPT
adversaries A, |PrVANON

A (λ)− 1
2
| is a negligible function of λ.

Signer anonymity. The signer anonymity property requires that a signature of reputation
reveal nothing about the signer beyond their reputation. In this case, we allow the adversary
access to all user’s credentials. As a result, they have no need for the oracle O, as the
adversary could answer the queries itself.

PrSANON
A (λ) = Pr

 b = b′ ∧
Legal(msg,Σ∗0,Σ

∗
1)

∣∣∣∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(i∗0, i
∗
1, V

∗
0 , V

∗
1 ,msg, st)← A(params, [credi]); b

R←− {0, 1};
Σ∗b ← SignRep(params, credi∗b , V

∗
b ,msg); b′ ← A(st,Σ∗b)

∣∣∣∣∣∣∣∣∣

Here, Legal requires only that VerifyRep(params,msg,Σ∗0) = VerifyRep(params,msg,Σ∗1).
That is, the value of b should affect neither the reputation values of the resulting signatures
nor their validity.

Definition 5. A scheme for signatures of reputation is signer anonymous if, for all PPT
adversaries A, |PrSANON

A (λ)− 1
2
| is a negligible function of λ.

Reputation soundness. To define the soundness of a scheme for signatures of reputation,
we use a computational game in which the adversary must forge a valid signature of some
reputation strictly greater than that of any signature they could have produced through
legitimate use of the scheme.

PrSOUND
A (λ) = Pr

 VerifyRep(params,msg,Σ) 6= ⊥
∧ Legal(openkey, L,msg,Σ)

∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(msg,Σ)← AOL(params)

∣∣∣∣∣∣

In this case, Legal makes the requirement that Σ /∈ L. More subtly, it must also ensure that
the forged signature has reputation greater than what it could be if the adversary had used
the scheme normally. The corresponding requirement checked by Legal may be formalized
as follows. Let C = { i | (“corrupt”, i) ∈ L } be the set of corrupted users. For each i ∈ C,
define Si = { j | (“vote”, j, nym) ∈ L∧j /∈ C∧i = OpenNym(openkey, nym) }. Let `1 = |C|,
and let `2 = maxi∈C |Si|. That is, `2 is the greatest number of distinct honest users that
voted for a single corrupt user. Then we require that VerifyRep(params,msg,Σ) > `1 + `2
for the adversary to succeed.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 23

Definition 6. A scheme for signatures of reputation is sound if, for all PPT adversaries
A, PrSOUND

A (λ) is a negligible function of λ.

In some applications, a weaker version of soundness may suffice and may be desirable
for greater efficiency. One natural way to relax the definition is to specify an additional
security parameter 0 ≤ ε < 1 as a multiplicative bound on the severity of cheating we wish
to prevent. That is, we require a signature of reputation c to ensure that at least (1− ε) · c
distinct votes for the signer exist. To this end, we define Prε−SOUND

A (λ) the same way as
PrSOUND
A (λ), but using the requirement that (1− ε) ·VerifyRep(params,msg,Σ) > `1 + `2.

This yields the following definition of ε-soundness.

Definition 7. A scheme for signatures of reputation is ε-sound if, for all PPT adversaries
A, Prε−SOUND

A (λ) is a negligible function of λ.

Note that Definition 6 is the special case of the above where ε = 0.

2.2 Building Blocks

We now describe the technical tools from which our scheme is constructed, including several
standard cryptographic primitives, two specialized modules, and our complexity assump-
tions. First of all, our constructions rely on a bilinear map between groups of prime order
p, which we denote e : G× Ĝ→ GT . We also assume the availability of a collision-resistant
hash function H : {0, 1}∗ → Zp.

Non-interactive proof systems for bilinear groups. Our scheme makes extensive use
of the recent Groth-Sahai non-interactive proof system [49]. Their techniques allow the
construction of non-interactive witness-indistinguishable (NIWI) and non-interactive zero-

knowledge (NIZK) proofs for pairing product equations, multi-scalar equations in G or Ĝ,
and quadratic equations in Zp. We now define the notation we will use to refer to this
scheme. We write GS.Setup(1λ)→ (crs, xk) to denote the setup algorithm, which outputs
a common reference string crs and an extractor key xk. We use the notation introduced by
Camenisch and Stadler [30] of the form Π = NIZK{ x1, . . . , xk : E1 ∧ . . . ∧ E` } to denote
the construction of a zero-knowledge proof that a set of equations E1, . . . , E` is satisfiable.
Here, x1, . . . , xk denote the secret witness variables. The NIZK consists of a commitment to
each of the k witness variables, along with a constant size value for each of the ` equations.
When variables other than the witnesses appear in the listed equations, those are public
values which are not included in the proof. These values must be available for verification
of the resulting proof, which we denote by GS.Verify(crs,Π, 〈a1, . . . , am〉). The arguments
a1, . . . , am are the public values; the relevant equations will be clear from context. Note
that in the GS proof system, it is possible to produce a NIZK only when the equations
being proved are “tractable” [48]. This condition holds for all the equations throughout our
scheme, since none involve any elements of GT except the identity.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 24

Selective-tag weakly CCA-secure encryption. Next, we use a tag based encryption
scheme [64], which we require to be selective-tag, weakly CCA-secure. For this we may
employ the scheme due to Kiltz [55] based on the DLinear assumption. We denote its
algorithms as follows.

CCAEnc.Setup(1λ)→ (pkcca, skcca): Generate a public, private key pair.

CCAEnc.Enc(pkcca, tag,msg, (r, s))→ C: Encrypt a message under the given public key
and tag using randomness (r, s) ∈ Z2

p.

CCAEnc.Dec(skcca, tag, C)→ msg: Use the private key to decrypt a ciphertext encrypted
under tag.

When we need to encrypt multiple elements ~x = (x1, . . . , xk) ∈ Gk, we use the following
shorthand: CCAEnc.Enc(pkcca, tag, ~x, ~r), where ~r ∈ Z2k

p .

Weakly EF-CMA secure signatures and strong one-time signatures. We will also
use an SDH-based signature scheme due to Boneh and Boyen [15], which we denote BBSig.

Let g
R←− G, s R←− Zp. In BBSig, the signing key is skbb = (g, s), the verification key is

vkbb = (g, gs), a message msg ∈ Zp is signed by computing σbb = g
1

s+msg , and a signature is
checked by verifying that e(σbb, g

s · gmsg) = e(g, g). This scheme is existentially unforgeable
under weak chosen-message attack (weak EF-CMA security), where the adversary commits
to the query messages at the beginning of the security game. The scheme is also a strong
one-time signature scheme; in our construction, we use subscripts such as σbb and σots to
distinguish the cases where we use the scheme for its weak EF-CMA security from the cases
where we use it to produce a strong one-time signature.

Signature scheme for certificates. To produce users’ secret credentials in our construc-
tion, the registration authority will need to sign tuples of ` elements from G. For this purpose
we define the following signature scheme, denoted Cert.

Cert.Setup(1λ)→ (vkcert, skcert): Randomly select γ
R←− Zp, ĝ, ĝ0

R←− Ĝ, g, h, f1, f2
R←− G,

and, for 1 ≤ i ≤ `, ûi, v̂i
R←− Ĝ. Output skcert = γ and vkcert = (g, h, f1, f2, ĝ, ĝ0, g

γ,
û1, . . . , û`, v̂1, . . . , v̂`).

Cert.Sign(vkcert, skcert,msg) → σ: Given an ` element message msg = (x1, . . . , x`) in G`,

select ρ, r1, . . . , r`, s1, . . . , s`
R←− Zp and compute the signature as σ = (σρ, g

ρ, hρ, ĝρ0 ,

{σri , σsi , gri , hsi , û
ri
i , v̂

si
i , (xif1)

ri , (xif2)
si}1≤i≤`), where σρ = ĝ

1
γ+ρ , σri = ĝ

1
ρ+ri , and

σsi = ĝ
1

ρ+si .

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 25

Cert.Verify(vkcert,msg, σ)→ 1 or 0: To check a signature σ, we verify that
e(gγgρ, σρ) = e(g, ĝ), e(gρ, ĝ0) = e(g, ĝρ0), e(hρ, ĝ0) = e(h, ĝρ0) and that, for 1 ≤ i ≤ `,
e(gρgri , σri) = e(g, ĝ), e(hρhri , σsi) = e(h, ĝ), e(gri , ûi) = e(g, ûrii), e(hsi , v̂i) = e(h, v̂sii),
e(xif1, û

ri
i) = e((xif1)

ri , ûi), and e(xif2, v̂
si
i) = e((xif2)

si , v̂i).

The basic idea of Cert.Sign is to first use the long-term signing key γ to sign a one-time
signing key ρ, then use ρ to sign random numbers ri and si, which are in turn used to sign
the components of the message. In Appendix B, we prove that this scheme (like BBSig)
satisfies weak EF-CMA security.

Key-private encryption. Our construction also makes use of an IK-CPA secure (a.k.a.
key-private) encryption scheme which offers a multiplicative homomorphism. Informally, the
key privacy property ensures it is infeasible to match a ciphertext with the public key used
to produce it; this property is used to achieve receiver anonymity. Below, we give an IK-CPA
secure scheme which may be regarded as a variant of linear encryption [16].

IKEnc.Setup(1λ)→ paramsike: Select paramsike = (f, h)
R←− G2.

IKEnc.GenKey(paramsike)→ (upkike, uskike): To generate a key pair, select

uskike = (a, b)
R←− Z2

p and compute upkike = (fa, hb) ∈ G2.

IKEnc.Enc(paramsike, upkike,msg, (r, s)) → C: To encrypt a msg ∈ G under public key
upkike = (A,B) using random exponents r, s ∈ Zp, compute C = (msg · ArBs, f r, hs).

IKEnc.Dec(paramsike, uskike, C) → msg: To decrypt a ciphertext C = (C1, C2, C3) with
private key uskike = (a, b), compute msg = C1 · C−a2 · C−b3 .

To denote encryption of a k-block message ~x ∈ Gk, we will use the shorthand
IKEnc.Enc(paramsike, upkike, ~x, ~r), where ~r ∈ Z2k

p . In Appendix B, we provide a formal
definition of IK-CPA security and a proof the above scheme meets it.

The multiplicative homomorphism of this encryption scheme may be evaluated through
component-wise multiplication, denoted ⊗. Specifically, if (C1, C2, C3) and (C ′1, C

′
2, C

′
3) are

encryptions of x and x′ using the same upkike and exponents r, s and r′, s′ respectively, then
(C1, C2, C3) ⊗ (C ′1, C

′
2, C

′
3) is the encryption of x · x′ under r + r′ and s + s′. Also, we will

write (C1, C2, C3) � x′ to denote (C1 · x′, C2, C3), which is an encryption of x · x′ under the
original randomness r, s.

When using the above homomorphism to compute an encryption of x ·x′, the distribution
of the resulting ciphertext is dependent on that of the input ciphertexts. In our scheme, we
will need to rerandomize the ciphertexts to remove this dependency. Furthermore, we will
need to do so without knowledge of the upkike used for encryption. Observe that this is
possible if we have available two encryptions of 1 ∈ G under independent random exponents.
Specifically, suppose Cx is an encryption of x using rx, sx and C1, C2 are encryptions of 1

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 26

using r1, s1 and r2, s2, respectively. Select t1, t2
R←− Zp and compute C ′x = Cx ⊗ Ct1

1 ⊗ Ct2
2 ,

where Ct1
1 and Ct2

2 denote componentwise exponentiation. Then C ′x is an encryption of x
using exponents rx+r1t1+r2t2 and sx+s1t1+s2t2, and the distribution of C ′x is independent
of the distribution of Cx.

Assumptions. Here we detail the complexity assumptions necessary to prove the privacy
and security properties of our constructions. In addition to the well-known decisional linear
(DLinear) and strong Diffie-Hellman (SDH) assumptions, we employ the following three
assumptions, the first two of which are parameterized by a positive integer q.

BB-HSDH Select γ
R←− Z∗p, g

R←− G, ĝ, ĝ0
R←− Ĝ, and ρi

R←− Zp for i ∈ {1, . . . , q}. Then

given (g, gγ, ĝ, ĝγ, ĝ0, (ρi, ĝ
1

γ+ρi)1≤i≤q), it is computationally infeasible to output a tuple

(gρ, ĝρ0 , ĝ
1

γ+ρ) where ρ /∈ {ρ1, . . . , ρq}.

BB-CDH Select γ
R←− Z∗p, g

R←− G, ĝ, û
R←− Ĝ, and ρi

R←− Zp for i ∈ {1, . . . , q}. Then given

(g, gγ, ĝ, ĝγ, û, (ρi, ĝ
1

γ+ρi)1≤i≤q), it is infeasible to output ûγ.

SCDH Select ρ, r, s
R←− Zp, g, h

R←− G, and ĝ, û, v̂
R←− Ĝ. Then given (ρ, g, h, ĝ, û, v̂, ûr, v̂s, gr,

hs, ĝ
1
r+ρ , ĝ

1
s+ρ) it is infeasible to output a tuple (z, zr, zs) where z ∈ G and z 6= 1.

The first two assumptions above were introduced in the delegatable anonymous credential
work of Belenkiy et. al. [8]. The SCDH (“stronger than CDH”) assumption is new; we
provide a proof of its hardness in generic groups in Appendix A. Note that if we remove the

terms ĝ
1
r+ρ and ĝ

1
s+ρ from the SCDH assumption, the resulting assumption would be implied

by DLinear. Therefore, we are assuming that these two terms will not help the adversary in
outputting (z, zr, zs).

2.3 Algorithms

To better motivate our full construction, we first present a simpler, “unblinded” version which
neglects the receiver anonymity property and assumes users correctly follow the protocol.
The algorithms of this unblinded scheme will form part of the full version.

Unblinded scheme. In unblinded scheme, each user i generates a voting key votekeyi
and a receiver key rcvkeyi. Given rcvkeyi, a user j can use its votekeyj to compute an
unblinded vote Uj,i for user i. User i can then demonstrate its reputation by showing a
“weak encryption” of the unblinded votes it has received.

SetupUnblinded(1λ)→ paramsub: Select paramsub = (g, h)
R←− G2.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 27

GenVoteKey(paramsub)→ rcvkeyi, votekeyi: To make a key pair for user i, select αi, βi
R←− Zp

and xi,k, yi,k, zi,k
R←− G for k ∈ {1, 2}. Define vski = (αi, βi) and vpki = (gαi , hβi , zi,1, zi,2)

and output rcvkeyi = (xi,1, yi,1, xi,2, yi,2) and votekeyi = (vski, vpki).

VoteUnblinded(rcvkeyi, votekeyj) → Uj,i: To compute a vote from j to i, we parse the
keys as above, using subscripts i, j to distinguish the components of user i’s key and
user j’s key, then output Uj,i = (x

αj
i,1 · y

βj
i,1 · zj,1, x

αj
i,2 · y

βj
i,2 · zj,2).

ShowRep(U1, . . . , Uc, (r, s)) → rep: To compute the weakly encrypted version of c un-
blinded votes using random exponents r, s ∈ Zp, we output rep = [uri,1 · usi,2]1≤i≤c,
where ui,1, ui,2 denote the two components of Ui.

These algorithms are designed to ensure several properties we will need when they are
used within the full construction. First, an unblinded vote Uj,i is a deterministic func-
tion of votekeyj and rcvkeyi, so votes Uj1,i, Uj2,i from distinct voters j1 6= j2 will have dis-
tinct values. Furthermore, ShowRep preserves this distinctness, so if Uj1,i 6= Uj2,i and
(Vj1,i, Vj2,i) = ShowRep(Uj1,i, Uj2,i, (r, s)), then Vj1,i 6= Vj2,i. Second, without votekeyj, an
adversary cannot forge a vote from user j (based on the CDH assumption). These two prop-
erties will be needed for the soundness of the full construction. Third, given Uj1,i1 , Uj2,i2 , two
colluding receivers i1 and i2 cannot determine whether j1 = j2.

2 This relies on the DLinear
assumption and will help ensure voter anonymity. Finally, if ShowRep is invoked twice on
the same unblinded votes but with independent randomness, the resulting values rep1 and
rep2 cannot be linked to one another. This also relies on the DLinear assumption and will
be used to help ensure signer anonymity.

Full construction. The algorithms of our full construction are given at the end of this
chapter in Figures 2.1 through 2.4. As for the opening algorithms, Setup′ is obtained
from Setup by simply returning the extractor key xk of the Groth-Sahai proof system as
openkey = xk rather than discarding it. The OpenNym algorithm then uses the extractor key
on the NIZK in a nym to obtain the committed rcvkey, which may then be matched against
a list of credentials cred1, . . . , credn to determine the owner of nym. Similarly, OpenVote
works by using the extractor key to obtain the rcvkey of the voter from the commitment in
the vote’s NIZK.

The algorithms of Figures 2.1 through 2.4 (along with opening algorithms described
above) satisfy Definitions 1–6. The correctness properties may be verified by inspection; for
each of the other properties, we provide proofs in Appendix B. Intuitively, the full scheme is
obtained through three modifications to the unblinded scheme. First, to limit voting to valid
members of the system, a user’s rcvkey and votekey are signed and issued by the registration

2Note that, if the term zj,k is omitted, an attack is possible. Two colluding users vote for a recipient i,
resulting in two votes U1, U2. Later, when i constructs rep = ShowRep(U1, U2, (r, s)), the adversary would
be able to detect the correlation in rep and confirm that it came from i. The term zj,k prevents this because
the adversary does not know its exponent.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 28

authority. Second, we use a “blinded” voting protocol based on key-private, homomorphic
encryption to achieve receiver anonymity. Third, users construct NIZKs to prove they have
correctly followed the protocol. We now elaborate on the later two ideas and the operation
of the SignRep algorithm.

Blinded voting. From a high level, a user computes a one-time pseudonym nym by en-
crypting their rcvkey under their upkike. Instead of voting on the rcvkey, a voter then votes
on the encrypted version in the nym. This is made possible by the homomorphism of the en-
cryption scheme: the voter homomorphically computes an encryption of the unblinded vote,
which the recipient can later decrypt. Only the recipient has the secret key uskike necessary
to do so.

More precisely, if (Cx,k, Cy,k)k∈{1,2} is the encryption of rcvkey = (x1, y1, x2, y2), the voter

computes the encrypted vote as (Cα
x,k⊗C

β
y,k�zk), where α, β, zk come from the voter’s key. To

allow the voter to rerandomize the resulting ciphertext using the technique described in Sec-
tion 2.2, the recipient also includes two independent encryptions of 1 ∈ G in the nym, which
we denote C1,1 and C1,2. To understand the requirement that IKEnc be selective-tag weakly
CCA-secure, recall that in the security definition, when an adversary makes a “signrep” or-
acle query, it can indirectly learn whether one or more votes correspond to the user i. This
allows the oracle to be used as something similar to a decryption oracle, ultimately requiring
a CCA security property. To ensure an adversary cannot frame a honest user i by forging a
nym that opens to user i, the GenNym algorithm also picks a one-time signature key pair
(skots, vkots) and proves knowledge of a signature σbb ← BBSig.Sign(skbb, H(vkots)), then
uses skots to sign the entire nym. One-time signatures are similarly employed in Groth’s group
signature scheme [48]; we also use this technique in the votes and signatures of reputation.

Nested NIZKs. Users must prove through a series of NIZKs that they have correctly
followed the algorithms using credentials certified by the registration authority. It is worth
mentioning that we use “nested” NIZKs. Specifically, a signature of reputation includes a
commitment to the votes and a NIZK proving they are valid. Because the votes themselves
contain NIZKs, proving that the votes are valid involves proving that the NIZKs they contain
satisfy the Groth-Sahai NIZK verification equations, all within the NIZK for the resulting
signature.

Signatures of reputation. To construct a signature of reputation, the signer uses uskike to
decrypt the ciphertexts in the votes they have received, obtaining unblinded votes U1, . . . , Uc.
It calls ShowRep(U1, . . . , Uc) to compute a weak encryption of these unblinded votes. Recall
that this encryption preserves “distinctness.” It also encrypts these unblinded votes using
CCAEnc; this allows a simulator to open the signature of reputation under a simulated crs
without xk.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 29

2.4 Short Signatures of Reputation

What we have described thus far produces signatures of reputation c that are of size Θ(c).
If perfect soundness is not necessary, this cost can be dramatically reduced. Specifically,
in this section we describe a way to obtain signatures of size O(1

ε
log c) while maintaining

ε-soundness (Definition 7) in the random oracle model.
From a high level, we take the following approach in improving space efficiency. Rather

than including all votes in the signature, we only include a randomly selected, constant size
subset. Specifically, we require that the signer first commit to a list of all the votes with a
hash function H and then interpret the output of H as a challenge specifying the indices of
the votes to include. The signer must also demonstrate that the votes included were in fact
the votes at the indices in the challenge set when the commitment was formed. To do so
efficiently, we compute the commitment using a Merkle hash tree [67]. We implement this
technique with the following changes to the SignRep algorithm.

After determining the number of distinct unblinded votes c, set ` = dλ
ε
e; this will be the

size of our challenge set. Recall that λ is the security parameter. Now if ` ≥ c, we include
all votes, computing Σ normally. Otherwise, we proceed as follows. Let rep = (R1, . . . Rc).
Sort these values to obtain a list Rρ1 , Rρ2 , . . . , Rρc , where Rρi < Rρi+1

for 1 ≤ i ≤ c− 1. The
NIZK Π computed by SignRep will include the following values for the ρith vote: a tuple
θi of commitments to vti, tagi, Ui and a tuple of values ζi used to verify the GS.Verify and
IKEnc.Dec equations. We collect these together to form ωi = (i, Rρi , Rρi+1

, θi, ζi), with
Rρc+1 defined as a special symbol ∞ for consistency.

Now we can compute the set of challenge indices. Let m = dlog2 ce be the height of the
smallest binary tree with at least c leaf nodes. We construct a complete binary tree of height
m, associating the first c leaf nodes with the values ω1, ω2, . . . , ωc and any remaining leaf
nodes with dummy values ωc+1, . . . , ω2m = 0. Next, we compute a hash value hn for each
node n in the tree as follows. If n is a leaf with index i, we set hn = H(ωi); otherwise, n
has a left child nl and a right child nr and we set hn = H(hnl‖hnr). We thus obtain a hash
value hroot for the root of the tree to be used to construct a set of ` distinct challenge indices
I ⊂ {1, 2, . . . , c}. This is done by starting with an empty set I, and adding the indices
1 + (H(0‖hroot) mod c), 1 + (H(1‖hroot) mod c), etc., one by one, skipping duplicates and
stopping when |I| = `.

Now that we have specified the challenge set I, we may list the values included in the
final signature of reputation. We start with the proof Π computed as before and remove
all per-vote values θρi , ζρi for i /∈ I. Note that the result is a valid Groth-Sahai NIZK that
only verifies the votes at indices in I; furthermore, it is distributed identically to a proof
computed directly using only those votes. In addition to the reduced proof Π, we include in
the final signature of reputation the pairs (Rρi , Rρi+1

) for each i ∈ I and the off-path hashes
needed to verify that the challenge set was constructed correctly. There are precisely dlog2 ce
off-path hash values for each vote (although some will be shared by multiple votes), so we
obtain an overall signature size of O(` log c) = O(1

ε
log c).

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 30

The necessary modifications to the VerifyRep algorithm are straightforward. We verify
the proof Π normally, then collect each of the per-vote terms present and hash them with H
to obtain the values of the corresponding leaves in the hash tree. Using the provided off-path
hash values, we recompute the root value hroot. From hroot, we compute the challenge set I,
and then we check that it corresponds to the votes that were included. Also, for each pair
(Rρi , Rρi+1

), we check that Rρi < Rρi+1
.

Let SignRep′ and VerifyRep′ denote the modified versions of the SignRep and
VerifyRep algorithms as described above. Then the algorithms Setup, GenCred, GenNym,
Vote, SignRep′, and VerifyRep′ constitute an ε-sound scheme for signatures of reputa-
tion according to Definition 7. In Appendix B, we prove this in the random oracle model.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 31

Setup(1λ)
(crs, xk)← GS.Setup(1λ)
paramsub ← SetupUnblinded(1λ)
paramsike ← IKEnc.Setup(1λ)
(pkcca, skcca)← CCAEnc.Setup(1λ)
(vkcert, skcert)← Cert.Setup(1λ)
Return params = (crs, paramsub, paramsike, pkcca, vkcert), authkey = skcert

GenCred(params, authkey)
(rcvkey, vsk, vpk)← GenVoteKey(paramsub)
(vkbb, skbb)← BBSig.Setup(1λ)
(upkike, uskike)← IKEnc.GenKey(paramsike)
cert← Cert.Sign(vkcert, skcert, 〈rcvkey, vpk, vkbb, upkike〉)
Return cred = (rcvkey, vpk, vkbb, upkike, cert, skbb, vsk, uskike)

GenNym(params, cred)
Parse cred = (rcvkey, vpk, vkbb, upkike, cert, skbb, vsk, uskike)
Denote msg = (rcvkey, 1, 1) ∈ G6

(vkots, skots)← BBSig.Setup(1λ), ~r
R←− Z12

p

C ← IKEnc.Enc(paramsike, upkike,msg, ~r)
σbb ← BBSig.Sign(skbb, H(vkots))
Π = NIZK{ rcvkey, vpk, vkbb, upkike, cert, σbb, ~r :

Cert.Verify(vkcert, 〈rcvkey, vpk, vkbb, upkike〉, cert)
∧ BBSig.Verify(vkbb, H(vkots), σbb)
∧ C = IKEnc.Enc(paramsike, upkike,msg, ~r)}

σots ← BBSig.Sign(skots, H(C‖Π‖vkots))
Return nym = (C,Π, vkots, σots)

Figure 2.1: The Setup, GenCred, and GenNym algorithms.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 32

Vote(params, cred, nym)
Parse cred = (rcvkey, vpk, vkbb, upkike, cert, skbb, vsk, uskike)
Parse nym = (C, . . .) where C = ({Cx,k, Cy,k}k∈{1,2}, C1,1, C1,2)
Parse vsk = (α, β), vpk = (A,B, z1, z2)
Parse rcvkey = (x1, . . .)
If ¬VerifyNym(params, nym) Return ⊥
(vkots, skots)← BBSig.Setup(1λ),
tag = H(vkots), σbb ← BBSig.Sign(skbb, tag)

~r = (r1,1, r1,2, r2,1, r2,2)
R←− Z4

p, ~s
R←− Z2

p

C1 =
[
(Cα

x,k ⊗ C
β
y,k � zk)⊗ C

rk,1
1,1 ⊗ C

rk,2
1,2

]
k∈{1,2}

C2 ← CCAEnc.Enc(pkcca, tag, x1, ~s)
Π = NIZK{ rcvkey, vpk, vkbb, upkike, cert, vsk, σbb, ~r, ~s :

Cert.Verify(vkcert, 〈rcvkey, vpk, vkbb, upkike〉, cert)
∧ BBSig.Verify(vkbb, tag, σbb)
∧ A = gα ∧ B = hβ

∧ C1 =
[
(Cα

x,k ⊗ C
β
y,k � zk)⊗ C

rk,1
1,1 ⊗ C

rk,2
1,2

]
k∈{1,2}

∧ C2 = CCAEnc.Enc(pkcca, tag, x1, ~s) }
σots ← BBSig.Sign(skots, H(nym‖C1‖C2‖Π‖vkots))
Return vt = (nym, C1, C2,Π, vkots, σots)

Subroutine: VerifyNym(params, nym)
Parse nym = (C,Π, vkots, σots)
If BBSig.Verify(vkots, H(C‖Π‖vkots), σots)
∧ GS.Verify(crs,Π, 〈params, C, vkots〉)

Return 1; Else return 0

Figure 2.2: The Vote algorithm.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 33

SignRep(params, cred, V,msg)
Parse cred = (rcvkey, vpk, vkbb, upkike, cert, skbb, vsk, uskike)
Parse paramsike = (f, h), upkike = (A,B), uskike = (a, b)
Parse V = {vt1, vt2, . . . , vtc′} where vti = (nymi, C1,i, C2,i,Πi, vkots,i, σots,i)
Denote tagi = H(vkots,i)
∀1 ≤ i ≤ c′ : Parse nymi = (C ′i,Π

′
i, vkots

′
,i, σots

′
,i)

If ∃1 ≤ i ≤ c′ : 1 6= VerifyVote(params, vti), return ⊥
If ∃1 ≤ i ≤ c′ : rcvkey 6= IKEnc.Dec(paramsike, uskike, C

′
i), return ⊥

(vkots, skots)← BBSig.Setup(1λ), tag = H(vkots)
σbb ← BBSig.Sign(skbb, H(vkots))
∀1 ≤ i ≤ c′ : U ′i ← IKEnc.Dec(paramsike, uskike, C1,i)
Remove duplicates: {U1, U2, . . . , Uc} = {U ′1, . . . , U ′c′},

where c ≤ c′ and U1, U2, . . . , Uc are all distinct

~r
R←− Z2

p, rep← ShowRep((U1, . . . , Uc), ~r)

~s
R←− Z2c

p , C ← CCAEnc.Enc(pkcca, tag, (U1, . . . , Uc), ~s)
Π = NIZK{ rcvkey, vpk, vkbb, upkike, cert, uskike, σbb, (vti, tagi, Ui)1≤i≤c, ~r, ~s :

Cert.Verify(vkcert, 〈rcvkey, vpk, vkbb, upkike〉, cert)
∧ BBSig.Verify(vkbb, tag, σbb) ∧ A = fa = hb

∧ ∀1 ≤ i ≤ c : GS.Verify(crs,Πi, 〈params, C1,i, C2,i, tagi〉)
∧ ∀1 ≤ i ≤ c : GS.Verify(crs,Π′i, 〈params, C ′i〉) (∗)
∧ ∀1 ≤ i ≤ c : rcvkey = IKEnc.Dec(paramsike, uskike, C

′
i)

∧ ∀1 ≤ i ≤ c : Ui = IKEnc.Dec(paramsike, uskike, C1,i)
∧ rep = ShowRep((U1, . . . , Uc), ~r)
∧ C = CCAEnc.Enc(pkcca, tag, (U1, . . . , Uc), ~s) }

σots ← BBSig.Sign(skots, H(c‖msg‖C‖rep‖Π‖vkots))
Return Σ = (c,msg, C, rep,Π, vkots, σots)
(*): Here, verify all equations in the NIZK Π′i, except the BBSig.Verify equation.

Subroutine: VerifyVote(params, vt)
Parse vt = (nym, C1, C2,Π, vkots, σots)
If BBSig.Verify(vkots, H(nym‖C1‖C2‖Π‖vkots), σots)
∧ GS.Verify(crs,Π, 〈params, C1, C2, vkots〉)
∧ VerifyNym(params, nym)

Return 1; Else return 0

Figure 2.3: The SignRep algorithm.

CHAPTER 2. CONSTRUCTING SIGNATURES OF REPUTATION 34

VerifyRep(params,msg,Σ)
Parse Σ = (c,msg, C, rep,Π, vkots, σots)
If there are no duplicate values in rep
∧ |rep| = c
∧ GS.Verify(crs,Π, 〈params, C, rep, vkots〉)
∧ BBSig.Verify(vkots, H(c‖msg‖C‖rep‖Π‖vkots), σots)

Return c; Else return ⊥

Figure 2.4: The VerifyRep algorithm.

35

Chapter 3

Efficient Private Stream Searching

A variety of types of information sources are made available by the Internet. These
include conventional websites, time sensitive web pages such as news articles and blog posts,
auctions, forums, and classified ads. One common link between all of these sources is that
searching mechanisms are vital for a user to be able to distill the information relevant to
him. Most search mechanisms involve a client sending a set of search criteria (e.g., a textual
keyword) to a server and the server performing the search over some large data set. However,
for some applications a client would like to hide their search criteria, i.e., which data they
are interested in. A client might want to protect the privacy of their search queries for a
variety of reasons ranging from personal privacy to protection of commercial interests. A
naive method for allowing private searches would be to download the entire resource to the
client machine and perform the search locally. However, this is typically infeasible due to
the large size of the data set to be searched, the limited bandwidth between the client and
the remote host, or to the unwillingness of the other party to disclose the entire resource to
the client.

In this chapter we detail an efficient cryptographic system which would allow a wide
variety of applications to conduct searches on untrusted servers while provably maintaining
the secrecy of the search criteria. We begin by reviewing several tools that will be needed in
our construction: Paillier’s cryptosystem, the definition of a pseudo-random function family,
and Bloom filters. After explaining the operation of our proposed algorithms, we will discuss
their asymptotic efficiency and several extensions which provide additional features.

3.1 Preliminaries

The Paillier cryptosystem is a probabilistic, public key cryptosystem which provides semantic
security under the decisional composite residuosity assumption (DCRA) [74]. As in RSA,
the public key N is the product of two large primes, and its factorization is the private
key. In the following discussion, the encryption of a plaintext m will be denoted E (m),

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 36

and the decryption of a ciphertext c will be denoted D (c). Plaintexts are represented by
elements of the group ZN while ciphertexts exist within ZN2 . Thus E : ZN → Z∗N2 and
D : Z∗N2 → ZN . Note that ciphertexts are twice as large as plaintexts.1 The key property of
the Paillier cryptosystem upon which the entire system is based is its homomorphism: for any
a, b ∈ ZN , it is the case that D (E (a) · E (b)) = a + b. That is, multiplying ciphertexts has
the effect of adding the corresponding plaintexts. This allows one to perform rudimentary
computations on encrypted values. Our construction may be adapted to use any public
key, homomorphic cryptosystem, but for concreteness, we assume the use of the Paillier
cryptosystem throughout the rest of the paper.

In our construction we also use a pseudo-random function family G : KG×Z×Z→ {0, 1}.
That is, given a key k, G should map each pair of integers to a pseudo-random bit. The
security of such a function family G is defined by the following game between a challenger

and an adversary A. A challenger chooses a random key k
R←− KG and sets g = Gk, then flips

a coin β ∈ {0, 1}. At this point the adversary submits a series of queries from the domain
Z × Z to the challenger. If β = 0 the challenger will respond by evaluating the function g
on the input, whereas if β = 1 it will respond with a random bit to all new queries, while
giving the same response if the same query is made twice. Finally, the adversary outputs a
guess β′. We define the adversary’s advantage in this game as AdvA = |P (β = β′)− 1

2
|. We

say that a pseudo random function is (ωt, ωq, ε)-secure if no ωt time adversary that makes
at most ωq oracle queries has advantage greater than ε. Interestingly, the security of the
pseudo-random function family employed in our scheme is actually only necessary to prove
correctness properties. Privacy is unaffected, as explained in Section 3.3. For the purpose

of our constructions, we may simply select a random k
R←− KG and provide g = Gk ahead of

time as a global, public parameter.
A Bloom filter [13] is a space-efficient data structure for storing a set of keys that has

several unique features. First, rather than allowing direct enumeration of the keys stored,
a Bloom filter only supports querying to determine if a given key is present. Second, while
queries for a key that has been previously stored will always succeed, a query for a key which
has not been previously stored will also succeed with some small, configurable probability.
This false positive inducing “lossiness” allows Bloom filters to achieve extremely compact
storage. A Bloom filter may be implemented as a vector of ` bits v1, v2, . . . v` ∈ {0, 1}, all
initially zero, and a collection of k hash functions hi : {0, 1}∗ → {1, 2, . . . `}, i ∈ {1, 2, . . . k}.
To insert a key x ∈ {0, 1}∗, we set vh1(x) = vh2(x) = · · · vhk(x) = 1. To query for a key y, we
check whether vhi(y) = 1 for all i ∈ {1, 2, . . . k} and return true if so. If vhi(y) = 0 for some
i ∈ {1, 2, . . . k}, we return false. Based on the number of keys one expects to store and a
desired false positive rate, optimal values for ` and k may be selected [21].

1Although the ciphertexts of any probabilistic cryptosystem must be larger than the plaintexts, the
message expansion can be reduced through a generalization of the Paillier cryptosystem due to Damg̊ard
and Jurik [38]. In their scheme the plaintext and ciphertext spaces are ZNs and Z∗

Ns+1 for any s ∈ {1, 2, . . .}.
However, the constraints in this context make the original situation of s = 1 preferable in practice.

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 37

Query(1λ, ε, S,m, n)
Generate Paillier modulus N = pq
For 1 ≤ i ≤ |D| :

If wi ∈ S, qi ← 1
Else qi ← 0
Q[i]← E (qi)

Return query = (ε,m, n,N,Q), key = (p, q)

Figure 3.1: The Query algorithm.

3.2 New Constructions

We now describe the algorithms of the new private search scheme and give an analysis of
their complexity and security properties. As explained in Section 1.4, our improvements
to Ostrovsky-Skeith are based on allowing collisions in the main document buffer while
returning additional information in one of two ways: the simple metadata construction and
the Bloom filter construction. For ease of exposition, we first describe the version of the
scheme using the Bloom filter construction, then give the modifications necessary to employ
the simple metadata construction. Additionally, we will defer discussion of several special
failure cases to the next section.

3.2.1 Query

Figure 3.1 gives the algorithm for producing the encrypted query. We assume the availabil-
ity of a public dictionary of potential keywords D = {w1, w2, . . . , w|D|}. Constructing the
encrypted query for some disjunction of keywords S ⊆ D then proceeds as in the scheme
of Ostrovsky and Skeith, regardless of whether the simple metadata construction or Bloom
filter construction will be used. The client generates a Paillier modulus and saves its factor-
ization as their key. For each i ∈ {1, . . . , |D|}, we define qi = 1 if wi ∈ S and qi = 0 if wi /∈ S.
The values q1, q2, . . . , q|D| are encrypted (independently randomizing each encryption) and
put in the array Q = (E (q1) , E (q2) , . . . , E

(
q|D|
)
). This is sent to the server along with the

public key N and search parameters ε, m, and n. In Section 3.4 we give an alternative form
for the encrypted queries which eliminates the public dictionary D.

3.2.2 Search (Bloom Filter Construction)

The Search algorithm run by the server is shown in Figure 3.2. We begin our description
of its operation by explaining the state the server must maintain.

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 38

State. In addition to the current file number i, the server must maintain three buffers as
it processes the files in its stream. These buffers are hereafter referred to as the data buffer,
the c-buffer, and the matching-indices buffer and are denoted F , C, and I respectively. Each
of these is an array of elements from the ciphertext space Z∗N2 , with F and C of length `F
and I of length `I . The lengths `F and `I are chosen by the server based on the parameters
ε, m, and n; the considerations behind this choice are explained in Section 3.3. Each of
these buffers begins with all its elements initialized to encryptions of zero, which may be
computed by the server using the client’s public key.2 For simplified notation, we assume
that each document is at most blog2Nc bits and therefore fits within a single plaintext in
ZN . For longer documents requiring s elements of ZN , we would let F be an `F × s array
and operations involving a file updating F would be performed blockwise; alternatively, the
extension given in Section 3.4 could be used to allow variable-length documents.

The data buffer will store the matching files in an encrypted form which can then be used
by the client to reconstruct the matching files. In particular, the data buffer will contain a
system of linear equations in terms of the content of the matching files in an encrypted form.
This system of equations will later be solved by the client to obtain the matching files.

The c-buffer stores in an encrypted form the number of keywords matched by each match-
ing file. We call the number of keywords matched for a file the c-value of the file. The c-buffer
will be used during reconstruction of the matching files from the data buffer by the client.
As in the case of the data buffer, the c-buffer stores its information in the form of a system
of linear equations. The client will later solve the system of linear equations to reconstruct
the c-values.

The matching-indices buffer is an encrypted Bloom filter that keeps track of the indices
of matching files in an encrypted form. More precisely, the matching-indices buffer will be an
encrypted representation of some set of indices {α1, . . . , αr} where {α1, . . . , αr} ⊆ {1, . . . , t}.
Here r is the number of files which end up matching the query.

Processing steps. We now detail how these buffers are updated as each file is processed.
To process the ith file f , the server takes the following steps.
Step 1: Compute encrypted c-value. First, the server looks up the query array entry Q[j]
corresponding to each word wj found in the file. The product of these entries is then
computed. Due to the homomorphic property of the Paillier cryptosystem, this product
is an encryption of the c-value of the file, i.e., the number of distinct members of S found in
the file. That is, ∏

wj∈words(f)

Q[j] = E

(∑
wj∈words(f)

qj

)
= E (ci)

where words(f) is the set of distinct words in the ith file and ci is defined to be |S∩words(f)|.
Note in particular that ci 6= 0 if and only if the file matches the query.

2Since these values need not be individually randomized, it actually suffices to initialize each to the value
one, which is a valid Paillier encryption of zero under any public key.

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 39

Search(query, f, buf)
If buf 6= ⊥, Parse buf = (i, F, C, I)
Else initialize each element of F,C, I to E (0) and let i = 1

/* Step 1 */

c← E (0)
For wj ∈ words(f)
c← c ·Q[j] mod N2

/* Steps 2 and 3 (in parallel) */

e← cf mod N2

For 1 ≤ j ≤ `F
If g(i, j) = 1
F [j]← F [j] · e mod N2

C[j]← C[j] · c mod N2

/* Step 4 */

For 1 ≤ j ≤ k
`← hj(i) mod `I
I[`]← I[`] · c mod N2

Return buf = (i+ 1, F, C, I)

Figure 3.2: The Search algorithm.

Step 2: Update data buffer. The server computes E (ci)
f = E (cif) using the homomorphic

property of the Paillier cryptosystem. Note that cif = 0 if f does not match the query.
The server then multiplies the value E (cif) into each location j in the data buffer where
g(i, j) = 1 (recall that g : Z × Z → {0, 1} is pseudo-random function chosen ahead of time
as a global, public parameter). Suppose for example we are updating the third location in
the data buffer with the second file, denoted f2. Assume that the first file (f1) was also
multiplied into this location, i.e., g(1, 3) = g(2, 3) = 1. Each of the two files may or may
not match the query. Suppose in this example that f1 matches the query, but f2 does
not. Before processing f2 we have D (F [3]) = c1f1 mod N . After multiplying in E (c2f2),
D (F [3]) = c1f1 + c2f2 mod N . But c2 = 0 since f2 does not match, so it is still the case
that D (F [3]) = c1f1 mod N and the data buffer is effectively unmodified. This mechanism
causes the data buffer to accumulate linear combinations of matching files while discarding
all non-matching files. Note that, as shown in Figure 3.2, the server multiplies ciphertexts
modulo N2; this results in the underlying plaintexts being added modulo N . Naturally, when

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 40

several files are added modulo N , the result will “wrap around” and be mapped back into
ZN . It is important to realize that this does not result in a loss of essential information or
pose any problem to the scheme. Provided there are as many (independent) linear equations
as file blocks, the value of each file block will be uniquely determined, and the client will be
able to correctly recover each of the files using the Extract algorithm.
Step 3: Update c-buffer. The value E (ci) is similarly multiplied into each of the locations j
in the c-buffer where E (cif) was used to update the data buffer, that is, wherever g(i, j) = 1.
Step 4: Update matching-indices buffer. The server then multiplies E (ci) further into a
fixed number of locations in the matching-indices buffer. This is done using essentially
the standard procedure for updating a Bloom filter. Specifically, we use k hash functions
h1, . . . , hk to select the k locations where E (ci) will be applied. For optimal efficiency,
the parameter k should be set to b `I log 2

m
c, where m is the number of files they expect to

retrieve [21]. Again, if f does not match, ci = 0 so the matching-indices buffer is effectively
unmodified.

3.2.3 Extract (Bloom Filter Construction)

After the server has processed some number of files t, it may return the buffers to the client,
who may then obtain the results with the Extract algorithm given in Figure 3.3. We now
explain each stage of this algorithm.
Step 1: Decrypt buffers. The client first decrypts the values in the three buffers with key,
obtaining decrypted buffers F ′, C ′, and I ′.
Step 2: Reconstruct matching indices. For each i ∈ {1, 2, . . . , t}, the client computes
h1(i), h2(i), . . . , hk(i) and checks the corresponding locations in the decrypted matching-
indices buffer; if all these locations are non-zero, then i is added to the list α1, α2, . . . , αβ of
potential matching indices. Note that if ci 6= 0, then i will be added to this list. However,
due to the false positive feature of Bloom filters, we may obtain some additional indices.
Now we may check for overflow, which occurs when the number of false positives plus the
number of actual matches r exceeds `F . At this point if β < `F , we add arbitrary, unique
integers to the list until it is of length `F . Here the function “pick” denotes the operation of
selecting an arbitrary member of a set.
Step 3: Reconstruct c-values of matching files. Given our superset of the matching indices
{α1, α2 . . . , α`F }, the client next solves for the values of cα1 , cα2 , . . . , cα`F . This is accom-
plished by solving the system of linear equations A · ~c = C ′ for ~c, where A is the matrix
with the i, jth entry set to g(αi, j), C

′ is the vector of values stored in the decrypted c-
buffer, and ~c is the column vector (cαi)i=1,...,`F . Now the exact set of matching indices
{α′1, α′2 . . . , α′r} may be computed by checking whether cαi = 0 for each i ∈ {1, . . . , `F}.
Before proceeding, we replace all zeros in the vector ~c with ones. As an example of Step 3,
suppose there are four spots in the decrypted c-buffer (i.e., `F = 4), seven files have been
processed (t = 7), and from Step 2 we have established the following list of potentially
matching indices: {α1, α2, α3, α4} = {1, 3, 5, 7}. Further suppose that the matrix induced by

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 41

Extract(key, buf)
/* Step 1 */

F ′[i]← D (F [i]) ∀ 1 ≤ i ≤ `F
C ′[i]← D (C[i]) ∀ 1 ≤ i ≤ `F
I ′[i] ← D (I[i]) ∀ 1 ≤ i ≤ `I

/* Step 2 */

β ← 0
For 1 ≤ i ≤ t

For 1 ≤ j ≤ k
`← hj(i) mod `I
If I ′[`] = 0, next i

αβ ← i, β ← β + 1
If β > `F , output “error: overflow” and exit
While β < `F
αβ ← pick(Z \ {α1, α2, . . . , αβ−1}), β ← β + 1

/* Step 3 */

A←
[
g(αi, j)

]
i∈{1,2,...,`F }
j∈{1,2,...,`F }

If A is singular, output “error: singular matrix” and exit
~c← A−1 · C ′
{α′1, α′2, . . . , α′r} = {α1, α2, . . . , α`F } \ { αi | cαi = 0 }
cαi ← 1 ∀ i ∈ { αi | cαi = 0 }

/* Step 4 */
~f ← diag(~c)−1 · A−1 · F ′
Output fα′1 , fα′2 , . . . , fα′r

Figure 3.3: The Extract algorithm.

the pseudo-random function g is

A =
[
g(αi, j)

]
i∈{1,2,...,`F }
j∈{1,2,...,`F }

=

1 0 1 0
1 1 0 1
1 0 0 1
0 1 1 0

 .

Then if the c-buffer decrypts to the column vector C ′ = (2 3 1 3), we may establish the

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 42

following linear system, since A · ~c = C ′.

cα1 + cα3 = 2

cα1 + cα2 + cα4 = 3

cα1 + cα4 = 1

cα2 + cα3 = 3 .

Solving, we obtain cα1 = c1 = 1, cα2 = c3 = 2, cα3 = c5 = 1, and cα4 = c7 = 0. We see now
that the seventh file appeared due to a Bloom filter false positive and that there were three
actual matching files (r = 3): f1, f3, and f5.
Step 4: Reconstruct matching files. Continuing in our description of the Extract algorithm
with Step 4, the content of the matching files fα′1 , fα′2 , . . . , fα′r may be determined by solving

the linear system A · diag(~c) · ~f = F ′, where

diag(~c) =

[c1 0 ···
0 c2
...

...

]
.

We directly compute ~f = diag(~c)−1 · A−1 · F ′. Note that diag(~c) is never singular because
we replaced all zeros in ~c with ones at the end of Step 3. The content of the matching
files appears as fα′1 , fα′2 , . . . , fα′r ; the other entries in ~f will be zero. Continuing the example
started in the description of Step 3, suppose the data buffer decrypts to F ′ = (32 32 10 44).
Of course, these are artificially small values; in reality they would be about 1024 bits each.
Then we may solve the following system

f1 + f5 = 32

f1 + 2f3 + f7 = 32

f1 + f7 = 10

2f3 + f5 = 44 ,

to determine that f1 = 10, f3 = 11, and f5 = 22. We also find that f7 = 0 as expected, since
c7 = 0.

Keep in mind that the linear equations for the file blocks and c-values are modulo N ;
that is, the values appearing the decrypted buffers F ′ and C ′ were computed modulo N as
explained in the description of the Search algorithm. The above example was shown using
standard arithmetic for simplicity, but a system of linear equations modulo N is solved in
the same way to recover the original values of each ci and fi.

3.2.4 The Simple Metadata Construction

Now that we have defined the version of the scheme incorporating the (more complex) Bloom
filter construction, we may easily describe the differences between this version of the scheme

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 43

and the variant using the simple metadata construction. In applications where the expected
number of matching documents is fixed and independent of the stream length, this latter
variant is preferable since it does not require communication and storage dependent on the
stream length. To produce this effect, we abandon the Bloom filter used in the matching-
indices buffer and instead use the Ostrovsky-Skeith construction to store the matching in-
dices. We briefly describe this technique below; for details (including the selection of the γ
parameter) refer to [72].

Let `I = γm, where γ is selected based on the desired error bound ε. Fix a set of hash
functions h1, h2, . . . , hγ. Also, let each entry in the matching-indices buffer I be a pair of
ciphertexts in Z∗N2 rather than a single ciphertext. To update I when processing the ith file
in Search, compute as follows.

For 1 ≤ j ≤ γ :
`← hj(i) mod `I
I[`][1]← I[`][1] · c mod N2

I[`][2]← I[`][2] · ci mod N2

To recover the set of matching indices in Extract, the client decrypts each pair of entries in
I. When a pair I ′[k][1] and I ′[k][2], k ∈ {1, . . . `I} is non-zero (and not a collision), the client
may recover the index of a matching file as i = I ′[k][2]/I ′[k][1]. When using this technique,
the c-buffer is omitted. We may set `F = m; otherwise, the data buffer is used as before.
There are now no false positives for streams of any length.

3.3 Analysis

In this section, we consider the computation and communication complexity of both variants
of our scheme and prove their security.

Computational complexity. The running time of the first client side algorithm, Query,
is O(|D|). This is exactly the same as in Ostrovsky-Skeith, in which the encrypted queries
take the same form. More precisely, Query requires |D| exponentiations and |S| ≤ |D|
multiplications. For large dictionaries, this is a significant cost in both our scheme and
Ostrovsky-Skeith; Section 3.4 presents an extension to our scheme which can greatly reduce
this cost.

When using the Bloom filter construction, the Search algorithm has running time
O(|words(f)| + s · m + log t

m
) when processing a file f . Recall that words(f) is the set

of keywords associated with that file and s is the number of plaintext blocks required to
store the contents of a file. With the simple metadata construction, the Search algorithm
runs in time O(|words(f)| + s ·m + logm). In either case, however, only s exponentiations
are required; the rest of the computation results from multiplications.

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 44

The Extract algorithm runs in time O(s ·m+m2.376 + t log t
m

) when using the Bloom
filter construction or O(s · m + m2.376) with the simple metadata construction. Note that
the s · m term is necessary to simply output the results. The m2.376 term corresponds to
solving a system of linear equations [34], and the t log t

m
term is the time to check each

possible document index against the Bloom filter. Asymptotically, these running times are
neither strictly better nor strictly worse than the O(s ·m logm) file reconstruction time with
Ostrovsky-Skeith. In practice, however, we find that file reconstruction is far faster using
either of the new schemes; this is considered in detail in the next chapter.

Communication complexity (Bloom filter construction). We now consider commu-
nication complexity, beginning with the scheme employing the Bloom filter construction. In
particular, we will show that given a desired success probability bound 1−ε, if the number of
matching documents is at most m and each is of length s, then by using communication and
storage overhead O(s ·m+m log t

m
), our scheme will enable the user to correctly reconstruct

all the matching documents from a stream of t documents with probability at least 1− ε.
In order to perform the analysis to demonstrate the above point, we first consider the

failure cases where the user will be unable to reconstruct the matching documents. From
the reconstruction procedure, we can see that the client fails to reconstruct the matching
files when the two systems of linear equations A · ~c = C ′ and A · diag(~c) · ~f = F ′ cannot be
correctly solved. This failure only happens in two cases:

1. The matrix A is singular. In this case, we will not be able to compute A−1 and solve
the system of linear equations.

2. There are more than `F−m false positives when the set of matching indices is computed
using the Bloom filter. Specifically, if in Step 2 in the Extract procedure, the number
of matching indices β reconstructed from the Bloom filter I ′ is greater than `F , then
we have more variables than the number of linear equations and thus we will not be
able to solve the system of linear equations A · ~c = C ′.

We show below that by picking the parameters `F and `I correctly, we can guarantee that
the probability of the above two failure cases can be bounded to be below ε. We demonstrate
this by proving the following three lemmas.

Lemma 3.3.1. For a given 0 < ε < 1, there exists n = o(log 1
ε
), such that for any n′ > n,

an n′ × n′ random (0, 1)-matrix is singular with probability at most ε.

Proof. Note that an n× n, random (0,1)-matrix is singular with negligible probability in n.
This was first conjectured by Erdös and was proven in the 1960’s [57]. The specific bound
has since been improved several times, recently reaching O

((
3
4

+ o(1)
)n)

[54, 83, 84]. Thus,
it is easy to see that the above lemma holds.

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 45

Lemma 3.3.2. Let G : KG×Z×Z→ {0, 1} be a (ωt, ωq,
ε
8
)-secure pseudo-random function

family. Let g = Gk, where k
R←− KG. Let `F = o(log 1

ε
) such that an `F × `F random

(0, 1)-matrix is singular with probability at most ε
4
. Then the matrix

A =
[
g(i, j)

]
i=1,...,`F
j=1,...,`F

is singular with probability at most ε
2
.

Intuitively, this lemma bounds the failure probability that the matrix A is singular. We
provide the proof in Appendix C. Additionally, we note that for a given constant ε the size
of the `F will be linear in m.

Lemma 3.3.3. Given `F > m + 8 ln(2
ε
), let `I = O(m log t

m
) and assume the number of

matching files is at most m out of a stream of t. Then the probability that the number of
reconstructed matching indices β is greater than `F is at most ε

2
.

Given the false positive rate of a Bloom filter, the proof is straightforward and also available
in Appendix C. Together, Lemma 3.3.2 and Lemma 3.3.3 provide the primary result:

Theorem 3.3.4. If `F = o(log 1
ε
) +O(m), `F > m+ 8 ln(2

ε
), `I = O(m log t

m
), and

G : KG × Z × Z → {0, 1} is a (ωt, ωq,
ε
8
)-secure pseudo-random function family, then when

the number of matching files is at most m in a stream of t, the new scheme using the Bloom
filter construction guarantees that the client can correctly reconstruct all matching files with
probability at least 1− ε.
Proof. By Lemma 3.3.2, the probability that the matrix A is singular is at most ε

2
. By

Lemma 3.3.3, the probability that the reconstruction of the matching indices will yield more
than `F matching indices is at most ε

2
. Since these are the only two failure cases as explained

earlier, the total failure probability, the probability that the client would fail to reconstruct
the matching files, is at most ε.

Communication complexity (simple metadata construction). We now consider the
complexity in the case of using the simple metadata construction.

Theorem 3.3.5. If `F = o(log 1
ε
) +O(m), `F > m+ 8 ln(2

ε
), `I = O(m(logm+ log 1

ε
)), and

G : KG×Z×Z→ {0, 1} is a (ωt, ωq,
ε
8
)-secure pseudo-random function family, then when the

number of matching files is at most m, the new scheme using the simple metadata construc-
tion guarantees that the client can correctly reconstruct all matching files with probability at
least 1− ε.
Proof. Briefly, the argument for Theorem 3.3.4 may be applied again, except that we no
longer need Lemma 3.3.3. Instead, we refer to the analysis in [72] that demonstrates that
the probability of an overflow in the alternative matching-indices buffer may be bounded
below ε with `I = γm where γ = O(logm+ log 1

ε
), producing an overall communication and

storage complexity of O(m logm).

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 46

Note that our scheme still produces a constant factor improvement over Ostrovsky-Skeith
in this case. If each file requires s plaintext blocks (i.e., is of length at most s · blog2 nc bits),
then we reduce communication and storage by a factor of approximately log(sm) for large
files. This is accomplished by retrieving the bulk of the content through the efficient data
buffer and only retrieving document indices through the less efficient matching-indices buffer.

Security. The security of the proposed scheme (in both variants) is straightforward. Intu-
itively, since the server is only provided with an array of encryptions of ones and zeros, the
scheme should be as secure as the underlying cryptosystem.

Theorem 3.3.6. If the Paillier cryptosystem is semantically secure, then the proposed pri-
vate searching scheme is semantically secure according to the definition in Section 1.4.

This proof, which is identical to the one for the Ostrovsky-Skeith scheme, is also provided in
Appendix C. Since the proof depends only on the form of the encrypted query, the variant of
the scheme which will be used is irrelevant. Note that this theorem establishes security based
on the decisional composite residuosity assumption (DCRA), since the Paillier cryptosystem
has been proven semantically secure based on that assumption [74].

3.4 Extensions

Here we describe a number of extensions to the proposed system which provide additional
features.

Compressing the Bloom filter. For security it will generally be necessary to use a
modulus N of at least 1024 bits (e.g., as required by the standards ANSI X9.30, X9.31,
X9.42, and X9.44 and FIPS 186-2) [79]. If the Bloom filter construction is used, the fact
that the c-values will never approach 21024 reveals that most of its space is wasted. A simple
technique allows improved usage of this space. If we assume that the sums of c-values
appearing in each location in I will be less than 216, for example, we may use each group
element to represent n

16
array entries. In the case of n = 1024, this reduces the size of I by

a factor of 64. When we need to multiply a value E (c) into the Bloom filter in the Search
algorithm, we use the following technique. To multiply it into the ith location in I, we let
i1 = b i

64
c and i2 = i mod 64. Then we compute

I[i1]← I[i1] · E (c)2
16i2

which has the result of shifting c into the i2th 16-bit block within the group element in I[i1].
After the client decrypts I, it may simply break up each element into 64 regions of 16 bits.
However, this space savings comes at an additional computation cost. The server will need
to perform k additional modular exponentiations for each file it processes.

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 47

Hashing keywords. In some applications, a predetermined set of possible keywords D
may be unacceptable. Many of the strings a user may want to search for are obscure (e.g.,
names of particular people or other proper nouns) and including them in D would already
reveal too much information. Since the size of encrypted queries is proportional to |D|, it
may not be feasible to fill D with, say, every person’s name, much less all proper nouns.

In such applications an alternative form of encrypted query may be used. Eliminating
D, we allow S to be any finite subset of Σ∗, where Σ is some alphabet. Now in Query,
we pick a length `Q for the array Q and initialize each element to E (0). Then for each
w ∈ S, we use a hash function h : Σ∗ → {1, . . . , `Q} to select a location h(w) in Q and set
Q[h(w)]← E (1). As before we rerandomize each encryption of zero and one. To process the
ith file fi in Search, the server may now compute E (ci) =

∏
w∈words(fi)Q[h(w)]. The rest of

the scheme is unmodified. Using this extension, it is possible for a file fi to spuriously match
the query if there is some word w′ ∈ words(fi) such that h(w′) = h(w) for some w 6= w′ in
S. The possibility of such false positives is the key disadvantage of this approach.

An advantage of this alternative approach, however, is that it is possible to extend the
types of possible queries. Previously only disjunctions of keywords in D were allowed, but
in this case a limited sort of conjunction of strings may be achieved. To support queries
of the form “w1 w2” where w1, w2 ∈ Σ∗, we change the way each words(fi) is derived from
the corresponding file fi. In addition to including each word found in the file fi, we include
all adjacent pairs of words in words(fi) (note that this approximately doubles the size of
words(fi)). It is easy to imagine further extensions along these lines. In particular, it is
possible to match against binary data by simply including blocks of the contents of fi in
words(fi). See Section 4.2 for a discussion of the size and computation time corresponding
to various query sizes in practical settings.

Arbitrary length files. In applications where the files are expected to vary significantly
in length, an unacceptable amount of space may be wasted by setting an upper bound on the
length of the files and padding smaller files to that length. Here we describe a modification
to the scheme which eliminates this source of inefficiency by storing each block of a file
separately. For convenience, we describe it in terms of the version of the scheme employing
the Bloom filter; applying this technique to the other variant is straightforward.

In this extension Query takes two upper bounds on the matching content. We let m
be an upper bound on the number of matching files and n be an upper bound on the total
length of the matching files, expressed in units of Paillier plaintext blocks. As before, the
c-buffer is of length O(m) and the matching-indices buffer is of length O(m log t

m
) (or, using

the alternative construction given in Section 3.2.4, O(m logm)). The data buffer is now set
to length O(n), and each entry in the data buffer is now a single ciphertext rather than an
array fixed to an upper bound on the length of each file. We introduce a new buffer on the
server called the length buffer, which is an array L set to length O(m). Intuitively, the length
buffer will be used to store the length of each matching file, and the data buffer will now be

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 48

used to store linear combinations of individual blocks from each file rather than entire files.
We briefly describe how this is accomplished in more concrete terms. Replace the cor-

responding portion of Search with the following, where `C = O(m) is the length of the
c-buffer and length buffer, `F = O(n) is the length of the data buffer, ĝ : Z3 → {0, 1} is an
additional pseudo-random function, di is the length of the ith file in the stream, and the di
blocks of the file are denoted fi,1, fi,2, . . . , fi,di .

e← cdi mod N2

For 1 ≤ j ≤ `C :
If g(i, j) = 1
C[j]← C[j] · c mod N2

L[j]← L[j] · e mod N2

For 1 ≤ j1 ≤ di :
e← cfi,j1 mod N2

For 1 ≤ j2 ≤ `F :
If ĝ(i, j1, j2) = 1
F [j2]← F [j2] · e mod N2

The client may use a modified version of Extract to recover the matching files. As before,
the matching-indices buffer I is used to determine a superset of the indices of matching files,
and a matrix A of length `C is constructed based on these indices using g. The vector ~c is
again computed as ~c← A−1 ·C ′. The client next computes the lengths of the matching files
as ~d ← diag(~c)−1 · A−1 · L′. If

∑
i di > `F , the combined length of the files is greater than

the prescribed upper bound and the client aborts. Otherwise, the data buffer now stores a
system of `F ≥ n linear equations in terms of the individual blocks of the matching files.
Briefly, the blocks may be recovered by constructing a new matrix Â, filling its entries by
evaluating ĝ over the indices of the blocks of the matching files. The blocks of the matching
files are then computed as ~f ← diag(~c ′)−1 · Â−1 · F ′, where ~c ′ is as ~c but with the ith entry
repeated di times.

Using this extension, space may be saved if the matching files are expected to vary in size.
Some information about the number expected to match and their total size is still needed
to set up the query, but the available space may now be distributed arbitrarily amongst the
files.

Merging parallel searches. Another extension makes multiple server, distributed searches
possible. Suppose a collection of servers each have their own stream of files. The client wishes
to run a private search on each of them, but does not wish to separately download and deci-
pher a full size buffer of results from each. Instead, the client wants the servers to remotely
merge their results before returning them.

This can be accomplished by simply having each server separately run the search al-
gorithm, then multiplying together (element by element) each of the arrays of resulting

CHAPTER 3. EFFICIENT PRIVATE STREAM SEARCHING 49

ciphertexts. This merging step can take place on a single collecting server, or in a hierarchi-
cal fashion. A careful investigation of the algorithms reveals that the homomorphism ensures
the result is the same as it would be if a single server had searched the documents in all the
streams. Care must be taken, however, to ensure the uniqueness of the document indices
across multiple servers. This can be accomplished by, for example, having servers prepend
their IP address to each document index. Also, it is of course necessary for the buffers on
each server to be of the same length.

Note that if the client splits its query and sends it to each of the remote servers, a different
set of keywords may be used for each stream. Alternatively, a server may split a query to
be processed in parallel for efficiency without the knowledge or participation of the client.

51

Chapter 4

Practical Feasibility

In the preceding two chapters, we introduced two new cryptographic schemes and showed
that their asymptotic costs are acceptable. In this chapter, we investigate these costs in more
detail to determine whether our proposals are feasible in practical scenarios. We begin by
giving further consideration to our signatures of reputation.

4.1 Space Requirements for Signatures of Reputation

Because our scheme is the first proposed for signatures of reputation, there is no previous
work to which we can compare its efficiency. Instead, we ask whether its use is feasible at
all using present technology. In particular, to our knowledge, no one has yet attempted to
implement the Groth-Sahai non-interactive proof system [49], so its costs deserve further
attention. Note that Groth and Sahai present three variations of their scheme. Because our
scheme operates in prime order groups and already requires the decisional linear assumption,
we use the the version of the Groth-Sahai scheme based on that assumption.

To make our analysis as concrete as possible, we assume an implementation of the scheme
will employ the Pairing Based Cryptography (PBC) library [63], a widely used library for
high performance computations in elliptic curve groups with associated pairings. Recall that
our scheme requires a bilinear map e : G× Ĝ → GT between groups of prime order p. The
first four rows of Table 4.1 give the size of elements in each of these groups (and the group
of exponents, Zp) as they are stored by PBC. We assume the use of the curve D159 provided
with the library, an MNT curve of embedding degree six [68]. Based on these sizes, a careful
account of the group elements returned by each algorithm of our scheme reveals the sizes
given in the remaining rows of the table.

As shown by the table, the space usage of one-time pseudonyms and votes is low. Sig-
natures of reputation, however, are quite costly, requiring nearly 0.5 MB to demonstrate
possession of each vote. While this is well within the capabilities of modern computing and
communication infrastructure, it is costly enough that we would not expect the scheme to be

CHAPTER 4. PRACTICAL FEASIBILITY 52

Object Size

Element of G 21 bytes

Element of Ĝ 61 bytes
Element of GT 120 bytes
Element of Zp 20 bytes
One-time pseudonym 25.5 KB
Vote 49.6 KB
Signature of reputation k 21.3 KB + k · 456.4 KB

Table 4.1: Sizes of various objects within the scheme for signatures of reputation.

used in casual situations where it provides only a minor benefit. Developing a more efficient
and thus more broadly applicable scheme would be useful future work.

While signatures of reputation are large by today’s standards, even for small numbers
of votes, the size of ε-sound signatures does scale well asymptotically. Figure 4.1 compares
signature size for several values of ε as the number of votes grows very large. After around five
thousand votes, the size of the signatures becomes essentially constant. In our calculations
we assumed the use of SHA-1 to construct the Merkle hash tree and picked challenge set
sizes which correspond to the level of security provided by the overall scheme.

4.2 Private Stream Searching Performance

We now turn to an analysis of our other primary contribution, the private stream searching
scheme. To better assess its applicability in practical scenarios, we detail its costs in a realistic
application. Specifically, we consider the case of making a private version of Google’s existing
News Alerts service1 using the new scheme. Use of our construction to retrieve the votes of
the scheme for signatures of reputation would be similar but less demanding.

According to the Google News website, their web crawlers continuously monitor approxi-
mately 4,500 news websites. These include major news portals such as CNN along with many
websites of newspapers, local television stations, and magazines. The alerts service allows
a user to register keywords of interest with Google’s servers. News articles are checked for
the search terms as they arise, and the user receives periodic emails listing matches. In this
setting, we analyze four aspects of the resources necessary to conduct the searches without
revealing the search terms to Google: the size of the query sent to the server (sq), the size of
the storage buffers kept by the server while running the search and eventually transmitted
back to the client (sb), the time for the server to process a single file in its stream (tp), and
the time for the client to decrypt and recover the original matching files from the information
it receives from the server (tr). Due to the potential sensitivity of search keywords, we will

1See http://www.google.com/alerts/.

CHAPTER 4. PRACTICAL FEASIBILITY 53

Figure 4.1: Signatures of reputation with large numbers of votes.

not use a public dictionary and we instead assume the use of the hashing extension described
in Section 3.4.

We assume that the client is able to estimate an upper bound m on the number of files
in the stream of t that will match the query. In situations where m may be more difficult to
estimate or bound, an alternative method for selecting it may be used, at the expense of a
small loss in privacy. Specifically, the server may assist the client in selecting m by computing
and returning encrypted c-values for a series of files during some initial monitoring period.
After decrypting the c-values, the client will know exactly how many files matched their
query during the monitoring period and use this information to select m before beginning
the normal stream search. While one iteration of this process may provide the server with
some information about possible keywords in the query, a full dictionary attack will not be
possible due to the required client participation in decrypting any c-values.

Query space. If we assume a 1024-bit Paillier key, then the encrypted query Q is 256`Q
bytes, since each element from the set of ciphertexts Z∗N2 is dlog2 ne

4
bytes, where n is the public

modulus. The smaller `Q is, the more files will spuriously match the query. Specifically,
treating the hash function used in constructing the query as a random oracle, we obtain the
following formula for the probability θ that a non-matching file fi will nevertheless result in
a non-zero corresponding E (c) (rearranged on the right to solve for `Q).

θ = 1−
(

1− |S|
`Q

)|words(fi)|
`Q =

|S|
1− (1− θ)

1
|words(fi)|

We performed a sampling of the news articles linked by Google News and found that
the average distinct word count is about 540 per article. This produces the false positive
rates for several query sizes listed in Table 4.2. The first column specifies a rate of spurious
matches θ and the second column gives the size sq of the minimal Q necessary to achieve
that rate for a single keyword search. Additional keywords increase sq proportionally (e.g.,
|S| = 2 would double the value of sq). It should be apparent that this is a significant cost;

CHAPTER 4. PRACTICAL FEASIBILITY 54

False positive rate Basic sq Reduced sq

0.1 1.3 MB 0.3 MB
0.01 13.1 MB 3.6 MB
0.001 132.8 MB 36.6 MB

Table 4.2: Encrypted query sizes necessary to ensure various false positive rates.

in fact, it turns out that sq is the most significant component in the total resource usage of
the system under typical circumstances.

Two measures may be taken to reduce this cost. First, a majority of distinct words
occurring in the text of a news article are common English words that are not likely to be
useful search terms. Given this observation, the client may specify that the server should
ignore the most commonly occurring words when processing each file. A review of the
3000 most common English words2 confirms that none are likely to be useful search terms.
Ignoring those words reduces the average distinct word count in a news article to about 200.

The second consideration in reducing sq is that a smaller Paillier key may be accept-
able. While 1024 bits is generally accepted to be the minimum public modulus secure for
a moderate time frame (e.g., as required by the standards ANSI X9.30, X9.31, X9.42, and
X9.44 and FIPS 186-2) [79], in some applications only short term guarantees of secrecy may
be required. Also, a compromise of the Paillier key would not immediately result in the
revelation of S. Instead, it would allow the adversary to mount a dictionary attack, checking
potential members of S against Q (which will also yield many false positives). Given this
consideration, if the client decides a smaller key length is acceptable, sq will be reduced.
The third column in Table 4.2 gives the size of the encrypted query using a 768-bit key and
pruning out the 3000 most common English words from those searched.

Despite the significant cost of sq in our system, the cost to obtain a comparable level of
security is likely to be much greater in the system of Ostrovsky and Skeith. In that case
sq = 256|D|, where |D| is the set of all possible keywords that could be searched. In order
to reasonably hide S ⊆ D, |D| may have to be quite large. For example, if we wish to
include names of persons in S, in order to keep them sufficiently hidden we must include
many names with them in D. If D consists of names from the U.S. population, sq will be
over 70 GB. It is important to emphasize, however, that the system is not truly stream
length independent when using the keyword hashing technique. Checking longer streams
may result in more false positives, but when using a public dictionary as in Ostrovsky and
Skeith, no false positives are possible.

Server storage. We now turn to the size of the buffers maintained by the server during
the search and then sent back to the client. This cost, sb, is both a storage requirement of

2Based on the British National Corpus: http://www.natcorp.ox.ac.uk/.

CHAPTER 4. PRACTICAL FEASIBILITY 55

(a) Ostrovsky-Skeith. (b) New scheme.

Figure 4.2: Server storage and server to client communication in the proposed and previous
schemes. Note difference in scale.

the server conducting the search and a communication requirement at the end of the search.
We assume fixed length files for this application rather than employing the extension for
arbitrary length files. In Bloom filter variant of the new scheme, to store the data buffer F ,
the c-buffer C, and the matching-indices buffer I, the server then uses

sb = 256(s`F + `F + `I).

bytes, where s is the number of number of plaintexts from ZN required to represent an article
and we assume the use of a 1024-bit key.

The client will specify `F and `I based on the number of documents they expect their
search to match in one period and the desired correctness guarantees. In the case of Google
news, we may estimate that each of the 4,500 crawled news sources produces an average of 30
articles per day. If the client retrieves the current search results four times per day, then the
number of files processed in each period is t = 33, 750. Now the client cannot know ahead
of time how many articles will match their query, so they instead estimate an upper bound
m. Based on this estimate, the analysis in Section 3.3 may be used to select values for `F
and `I that ensure the probability of an overflow is acceptably small. In these experiments,
we determined the minimum values for `F and `I empirically.

A range of desired values of m were considered and the results are displayed in Fig-
ure 4.2 (b). In each case, `F and `I were selected so that the probability of an overflow was
less than 0.01. In computing this probability, we treated the number of documents which
actually match the query as a binomial random variable with t trials and rate parameter m

t
,

as would be the case if each matches with some probability independent of the others. Also,

CHAPTER 4. PRACTICAL FEASIBILITY 56

Files to tp with tp with
retrieve m 768-bit key 1024-bit key

2 359 ms 600 ms
8 362 ms 600 ms

32 373 ms 603 ms
128 420 ms 617 ms
512 593 ms 669 ms

Table 4.3: Server processing time.

the spurious match rate θ was taken to be 0.001, and the news articles were considered to
be 5 KB in size (text only, compressed). Note that sb is linear with respect to the size of the
matching files. More specifically, Figure 4.2 (b) reveals that sb is about 2.5 times the size of
the matching files. We also show the result of using the simple metadata construction with
the new scheme, which performs about as well as the Bloom filter construction for small
searches but becomes less efficient with larger numbers of documents. For comparison, the
data stored by the server and returned to the client using the Ostrovsky-Skeith scheme for
private searching in this scenario is shown in Figure 4.2 (a).3 Note that this graph differs in
scale from Figure 4.2 (b) by a factor of ten.

To summarize, in the proposed system sb ranges from about 680 KB to about 7.3 MB
when the expected number of matching files ranges from 2 to 512 and the overflow rate is
held below 0.01. In the Ostrovsky-Skeith scheme, sb would range from about 280 KB to
110 MB.

File stream processing time. Next we consider the time tp necessary for the server
to process each file in its stream. This is essentially determined by the time necessary
for modular multiplications in Z∗N2 and modular exponentiations in Z∗N2 with exponents in
ZN . To roughly estimate these times, benchmarks were run on a modern workstation. The
processor was a 64-bit, 3.2 GHz Pentium 4. We used the GNU Multiple Precision Arithmetic
Library (GMP), a library for arbitrary precision arithmetic that is suitable for cryptographic
applications. With 768-bit keys, multiplications and exponentiations took 3.9µs and 6.2 ms
respectively. With 1024-bit keys, the times increased to 6.3µs and 14.7 ms.

The first step in processing the ith file in the Search procedure is computing E (c); this
takes |words(fi)| − 1 multiplications. We again assume |words(fi)| = 540 as discussed pre-
viously. Computing E (cfi) requires s modular exponentiations. Updating the data buffer
requires an average of s · `F

2
modular multiplications, updating the c-buffer requires another

3The paper describing this system did not explicitly state a minimum buffer length for a given number
of files expected to be retrieved and a desired probability of success, but instead gave a loose upper bound
on the length. Rather than using the bound, we ran a series of simulations to determine exactly how small
the buffer could be made while maintaining an overflow rate below 0.05.

CHAPTER 4. PRACTICAL FEASIBILITY 57

Key length m Decryption time Inversion time Total time

768 2 14 s <0.1 s 14 s
768 8 15 s <0.1 s 15 s
768 32 23 s <0.1 s 23 s
768 128 54 s 1.4 s 55 s
768 512 2.7 m 1.8 m 4.5 m

1024 2 23 s <0.1 s 23 s
1024 8 26 s <0.1 s 26 s
1024 32 38 s <0.1 s 38 s
1024 128 1.4 m 21 s 1.8 m
1024 512 4.4 m 2.9 m 7.3 m

Table 4.4: Time (in seconds and minutes) necessary to recover the original documents from
the returned results.

`F
2

multiplications, and updating the matching-indices buffer requires k = b `I log 2
m
c multipli-

cations. The time necessary for these steps is given for several values of m in Table 4.3.
The majority of tp is due to the s modular exponentiations. Since the Ostrovsky-Skeith
scheme requires the same number of modular exponentiations, the processing time for each
file would be similar.

File recovery time. Finally, we consider the time necessary for the client to recover the
original matching files after a period of searching, tr. This time is composed of the time to
decrypt the returned buffers and the time to setup and solve a system of linear equations,
producing the matching documents. A decryption requires 1536 modular multiplications
with a 1024-bit key and 1152 with a 768-bit key [38]. The times necessary to decrypt the
buffers are given in the third column of Table 4.4. This time is typically less than a minute,
but can take almost five minutes with many files.

The most straightforward way to solve the system of linear equations is by performing
LUP decomposition over ZN . Although LUP decomposition of an n × n matrix is Θ(n3),
practical cases are quite feasible. A naive implementation resulted in the benchmarks shown
in the fourth column of Table 4.4. The total time to recover the matching files is given in
the final column of Table 4.4.

Although the time spent in matrix inversions is a significant additional cost of the new
scheme over Ostrovsky-Skeith, it is more than offset by the reduced buffer size and resulting
reduction in decryption time. In Ostrovsky-Skeith, the times to decrypt the buffer returned
to the client in this scenario range from 6.79 seconds for m = 2 to 45.5 minutes for m = 512,
using a 768-bit key. With a 1024-bit key, the buffer decryption times range from 10.8 seconds
to 1.21 hours.

CHAPTER 4. PRACTICAL FEASIBILITY 58

4.3 Summary

Through a series of detailed calculations, we have determined that the cryptographic schemes
of the previous two chapters are feasible with current technology, although in some respects
they are costly. In the case of our scheme for signatures of reputation, all requirements are
low except the space required by the signatures. This cost is significant: about 0.5 MB per
vote. Nevertheless, we believe our proposal is valuable as the first scheme solving a problem
of this type and leave the development of a more efficient system to future work.

The analysis of our scheme for private stream searching has shown that it could be applied
in scenarios not previously practical. In particular, we have considered the case of conducting
a private search on essentially all news articles on the web as they are generated, estimating
this number to be 135,000 articles per day. In order to establish the private search, the
client has a one time cost of approximately 10 MB to 100 MB in upload bandwidth. Several
times per day, they download about 500 KB to 7 MB of new search results, allowing up to
about 500 articles per time interval. After receiving the encrypted results, the client’s PC
spends under a minute recovering the original files, or up to about 7 minutes if many files
are retrieved. To provide the searching service, the server keeps about 500 KB to 7 MB of
storage for the client and spends roughly 500 ms processing each new article it encounters.
In this scenario, the previous scheme would require up to twelve times the communication
and take up to four times as long for the client to recover the results.

59

Chapter 5

Internet-Scale Author Identification

Previous research has resulted in methods for decoupling identifying information such as
IP addresses from a user’s communications at the network level [40], and the cryptographic
schemes proposed in the preceding chapters are similarly designed to remove the need for
conventional identity at the application level. If all of these techniques were successfully
employed together, would any method of collecting a user’s actions into an identifying his-
tory remain? One possibility comes to mind: guessing the source of information posted
online based on nothing but its human-readable content. After all, any manually generated
material will inevitably reflect some characteristics of the person who authored it, and in
some scenarios these characteristics may be enough to determine whether two pieces of con-
tent were produced by the same person. For example, perhaps some individual is prone to
several specific spelling errors or has other recognizable idiosyncrasies. If enough material is
linked together through such characteristics, it may become personally identifiable, just as
if it had all been published under a single pseudonym. In this chapter, we present the first
investigation into the possibility of this process taking place on a sufficiently large-scale to
constitute a widespread threat to anonymity.

We focus our investigation on textual content, which is by far the most common type of
human-generated material and is well-suited to automated analysis. The problem of linking
texts by author presents itself in two forms: clustering and classification. In the former case,
one begins with a set of individual texts and attempts to group them by author. In the
latter, a set of example texts are already grouped by author, and the aim is to match one
or more new, unlabeled texts with one of the existing groups. Both tasks are similar at a
technical level, and many approaches to one can be applied to the other. At our disposal are
the techniques of machine learning and stylometry, the study of author-correlated features
of prose for the purpose of authorship attribution.

Our approach in gauging the risk of widespread linking of textual content is, essentially,
to try it ourselves and see whether we succeed. Of course, this approach can only confirm
the possibility of such an attack—it cannot demonstrate its impossibility. Thus, our goal
is to establish the first lower bound on the severity of this type of risk. To this end, we

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 60

have assembled large dataset of written content posted on the Internet by 100,000 users.
After extracting appropriate features from the sample texts, we apply conventional machine
learning algorithms to the task of matching the texts by author, simulating an attempt to
determine the author of some anonymously published content of interest.

Written content is published online in many forms, including message boards, wikis, and
various forms of live chat, such as IRC. In conducting our experiments, we chose blogs as
the source of textual content for several reasons. First, at the present time, they constitute
one of the most commonly used media of expression in written form, and large numbers of
blogs are readily available for assembly into an experimental dataset. Writing in blog format
generally includes longer passages of prose than message boards, and blogs are a common
choice for political expression, which is especially sensitive to issues of personal identifiability.

Numerous examples exist of attempts to determine the author of an anonymously pub-
lished blog. In 2009, fashion model Liskula Cohen filed a $3 million defamation lawsuit
against the anonymous author of a blog for calling her an insulting name. She eventually
succeeded in obtaining a court order demanding that Google, which owns the Blogger web-
site hosting the blog, reveal the identity of the blog’s owner. Google complied, revealing the
author’s name as Rosemary Port [14]. In the same year, an anonymous blogger criticized
the $300,000 salary and other perks received by Mac Brunson, pastor of a large church in
Jacksonville, Florida. Brunson asked detective Robert Hinson of the local sheriff’s depart-
ment (and member of Brunson’s church) to investigate the blog and its author. Although
the criticisms published by the blog were not in any way threatening, Hinson managed to
obtain a subpoena requiring Google to reveal the author’s identity. Again, Google complied,
revealing the blogger as Thomas A. Rich. After forwarding his name to Brunson, the sher-
iff’s department ceased their investigation without ever charging the author with a crime or
explaining the motivation for their investigation [22].

Both of these efforts relied on the author revealing their name or IP address to a service
provider, who in turn passed on that information. A careful author need not register for
a service with their real name, and tools such as Tor can be used to hide their identity
at the network level [40]. But if authors can be identified based on nothing but a passive
comparison of the content they publish to other content found on the web, no networking
tools can possibly protect them—this is the threat we aim to evaluate.

5.1 Related Work

Attempts to identify the author of a text based on the style of writing long predate computers.
Originally, stylometry arose in the context of literary criticism and consisted of manual
analysis by experts. The statistical approach to stylometry in the computer era was pioneered
in 1964 by Mosteller and Wallace, who identified the authors of the disputed Federalist
Papers [69]. While their results merely confirmed what a growing consensus of historians had
already concluded, the automated nature of their methods illustrated their power relative

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 61

to previous approaches, which relied on specialized knowledge of the subject matter and
potential authors of a text. Modern techniques for author identification combine stylometric
features with standard machine learning algorithms and have attempted to classify texts
with up to 300 candidate authors [1, 65, 39].

Stylometry has been used to attribute authorship in domains other than text, such as
music [6] and code [77], which also have grammars and other linguistic features shared with
natural language. Other forensic tasks such as identifying the file type of a binary blob [61]
use similar techniques, although the models are simpler than linguistic stylometry. Pla-
giarism detection is another application of authorship attribution; however, it emphasizes
content over style [66]. Juola has a survey of authorship attribution, not limited to stylom-
etry [52].

Little work has been done to investigate the privacy implications of stylometry, however.
Several researchers have considered whether the author of an academic paper under blind
review might be identified solely from the citations [50, 19]. However, to our knowledge, no
prior work has attempted to perform author identification at anything approaching “Internet
scale” in terms of the number of authors. Our work aims to determine whether such a
widespread threat exists rather than an attack targeted at some small group of individuals.
Other research in this area has investigated manual and automated techniques authors may
employ to make their writing more resistant to identification [20, 53].

5.2 Experimental Approach

In this section, we discuss how a real attack would work, the motivation behind our experi-
mental design, and what we hope to learn from the experiments.

Primarily, we wish to simulate an attempt to identify the author of an anonymously
published blog. If the author is careful to avoid revealing their IP address or any other
explicit identifier, their adversary may turn to an analysis of writing style. By comparing
the posts of the anonymous blog with a corpus of samples taken from many other blogs
throughout the Internet, the adversary may hope to find a second, more easily identified
blog by the same author. To have any hope of success, the adversary will need to compare
the anonymous text to far more samples than could be done manually, so they instead extract
numerical features and conduct an automated search for statistically similar samples.

Of course, this approach is unlikely to produce any conclusive proof of a match. Instead,
we imagine the adversary’s tools returning a list of the most similar possibilities for manual
followup. A manual examination may incorporate several characteristics that the automated
analysis does not, such as the location of the author.1 Alternatively, a powerful adversary
such as a government censor may require Google or another popular blog host to reveal
the login times of the top suspects, which could be correlated with the timing of posts on

1For example, if we were trying to identify the author of the once-anonymous blog Washingtonienne [60]
we’d know that she is is almost certainly a Washington, D.C. resident.

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 62

the anonymous blog, confirming a match. The purpose of the adversary’s tools is thus to
narrow the field of possible authors of the anonymous text enough that another approach to
identifying the author becomes feasible. As a result, in our experiments we test classifiers
which can estimate the probability of a label applying to a sample, rather than those which
can only return the most likely label. It is also worth noting that, in this scenario, there is
no hard and fast distinction between classification and clustering. None of the blogs may be
labeled with a name, but if enough material is linked together, it may be possible to track
down the author.

As in so many other research projects, the main challenge in designing our experiments
is the absence of a large dataset labeled with ground truth. To measure the feasibility of
matching one blog to another from the same author, we of course need a set of blogs already
grouped by author. If the experiments are to reflect matching at anything resembling the
scale of the Internet, manually collecting enough examples will be impossible.

As a result, our first approach to conducting experiments is to simulate the case of an
individual publishing two blogs by dividing the posts of a single blog into two groups; we
then measure our ability to match the two groups of posts back together. Specifically, we
select one of a large number of blogs and set aside several of its posts for testing. These
test posts represent the anonymously authored content, while the other posts of that blog
represent additional material from the same author found elsewhere on the Internet. We
next train a classifier to recognize the writing style of each of the blogs in the entire dataset,
taking care to exclude the test posts when training on the blog from which they were taken.
After completing the training, we present the test posts to the classifier and use it to rank all
the blogs according to their estimated likelihood of producing the test posts. If the source of
the test posts appears near the top of the resulting list of blogs, the writing style of its author
may be considered especially identifiable. As will be shown in Section 5.5, our experiences
applying this process have revealed surprisingly high levels of identifiability: using only three
test posts, the correct blog is ranked first out of 100,000 in over eight percent of trials.

At this point, the astute reader is no doubt brimming with objections to the methodology
described above—and rightly so. How can we be sure that any linking we detect in this way
is unintentional? Suppose a blog author signs each of their posts by adding their name
at the end. They would not be at all surprised to discover that an automated tool can
determine that the posts have the same author. More subtly, rather than linking posts
based on similarities in writing style, our classifiers may end up relying on similarities in
subject matter, such as specific words related to the topic of the blog. We take the following
strategies in avoiding these pitfalls:

1. We begin by filtering out any obvious signatures in the posts. We also remove markup
and any other text that does not appear to be directly entered by a human in order to
avoid linking based on the blog software used.

2. We carefully limit the features we extract from each post and provide to the classifier.
In particular, unlike previous work on author identification, we do not employ a “bag of

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 63

words” or any other features that can discover and incorporate arbitrary content. Our
word-based features are limited to a fixed set of function words which bear little relation
to the subject of discussion (e.g., “the,” “in,” etc.). While we do make use of single
character frequencies, we exclude bigrams and trigrams, which may be significantly
influenced by specific words.

3. We follow up the experiments described above (post-to-blog matching) with additional
experiments which actually involve matching distinct blogs to one another. Specifi-
cally, we assembled a small collection of sets of blogs with the same author; for these
experiments (blog-to-blog matching), we set aside one blog as the test content, mix the
others from the same author into the full dataset of 100,000 blogs, and then measure
our ability to pick them back out.

The results of the blog-to-blog matching experiments closely match the post-to-blog matching
results, and we also found the results were not dominated by any one class of features. These
facts have given us confidence that our methods are in fact discovering links in writing style—
not blog software or the topic of a blog.

5.3 Data Sources and Features

Having given some high-level motivation for our experimental approach and methodology, we
now detail our sources of data, the steps we took to filter it, and the feature set implemented.

Data sources. The bulk of our data was obtained from the ICWSM 2009 Spinn3r Blog
Dataset, a large collection of blog posts made available to researchers by Spinn3r.com, a
provider of blog-related commercial data feeds [23]. For the blog-to-blog matching experi-
ments, we supplemented this by scanning a dataset of 3.5 million Google profile pages for
users who specify multiple URLs [75]. Most of these URLs link to social network profiles
rather than blogs, so we further searched for those containing terms such as “blog,” “journal,”
etc. From this list of URLs, we obtained RSS feeds and individual blog posts.

We passed both sets of posts through the following filtering steps. First, we removed
all HTML and any other markup or software-related debris we could find, leaving only
(apparently) manually entered text. Next, we retained only those blogs with at least 7,500
characters of text across all their posts, or roughly eight paragraphs. Non-English language
blogs were removed using the requirement that at least 15% of the words present must be
among the top 50 English words, a heuristic found to work well in practice. Of course,
our methods could be applied to almost any other language, but some modifications to the
feature set would be necessary. To avoid matching blog posts together based on a signature
the author included, we removed any prefix or suffix found to be shared among at least
three-fourths of the posts of a blog. Duplicated posts were also removed.

At the end of this process, 5,729 blogs from 3,628 Google profiles remained, to which
we added 94,271 blogs from the Spinn3r dataset to bring the total to 100,000. Of the 3,628

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 64

Category Description Count

Length number of words/characters in post 2
Vocabulary
richness

Yule’s K and frequency of hapax legomena, dis
legomena, etc.

11

Word shape frequency of words with all uppercase letters, all lower-
case letters, etc.

5

Word length frequency of words that have 1–20 characters 20
Letters frequency of a to z, ignoring case 26
Digits frequency of 0 to 9 10
Punctuation frequency of .?!,;:()"-’ 11
Special characters frequency of ‘~@#$%^&*_+=[]{}\|/<> 21
Function words frequency of words like “the,” “of,” and “then” 293
Syntactic category
pairs

frequency of every pair (A,B), where A is the parent of
B in the parse tree

789

Table 5.1: The features used for classification. Most take the form of frequencies, and all
are real-valued.

retained Google profiles, 1,763 listed a single blog, 1,663 listed a pair of blogs, and the other
202 listed three to five. Our final dataset contained 2,443,808 blog posts, an average of 24
posts per blog (the median was also 24). Each post contained an average of 305 words, with
a median of 335.

Features. From each blog post, we extracted 1,188 real-valued features, transforming the
post into a high-dimensional vector. These feature vectors were the only input to our clas-
sifiers; the text of the blog post played no further role after feature extraction.

Table 5.1 summarizes the feature set. All but the last of these categories consist of
features which reflect the distributions of words and characters in each of the posts and have
been used in previous work on author identification [1]. The features in the second category
are designed to reflect the size of the author’s vocabulary by recording usages of rare words.
A hapax legomenon is a word that is used exactly once in some text (a post in our case).
We also record the frequency of words that appear twice (dis legomena), three times, and
so on, producing ten features. In addition, we include Yule’s K statistic, which aggregates
all such values (not only the first ten) into a single measure of vocabulary richness [86].
The next category concerns capitalization of words, as we expect the level of adherence
to capitalization conventions to act as a distinguishing component of an author’s writing
style given the unedited, free-form nature of written content on the Internet. In addition to
the frequency of all uppercase and all lowercase words, we record the frequencies of those
with only the first letter uppercase, those with an initial uppercase letter followed by a

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 65

ROOT

SBARQ

.

?

SQ

VP

NP

NN

post

VBG

blog

DT

this

VBD

wrote

WHNP

PP

NP

NNS

people

DT

these

IN

of

WHNP

WDT

Which

Figure 5.1: A sample parse tree produced by the Stanford Parser.

mix of upper and lowercase letters (camel case), and those with an initial lowercase letter
followed by at least one uppercase letter (the only other possibility). We compute each of the
letter frequency features as the number of occurrences of a specific letter in a post divided
by the length of the post in characters. Other single-character frequencies are computed
likewise, and word-frequency features are computed analogously, but at the level of words.
Appendix D includes the full list of function words used for the second-to-last category.

For the last category of features in Table 5.1, we use the Stanford Parser [56] to determine
the syntactic structure of each of the sentences in the input posts. As output, it produces a
tree for each sentence where the leaf nodes are words and punctuation used, and other nodes
represent various types of syntactic categories (phrases and parts of speech). Figure 5.1
shows an example parse tree as produced by the Stanford Parser, with tags such as NN for
noun, NP for noun phrase, and PP for prepositional phrase. We generate features from the
parse trees by taking each pair of syntactic categories that can appear as parent and child
nodes in a parse tree tree, and counting the frequency of each such pair in the input data.
Only immediate parent-child relationships are counted, so in the case of Figure 5.1, (SQ,VP)
would be recorded but (SQ,NP) would not.

To gain a better intuitive understanding of the relative utility of the features and for
use in feature selection, we computed the information gain of each feature over the entire
dataset [42]. We define information gain as

IG(Fi) = H(B)−H(B|Fi) = H(B) +H(Fi)−H(B,Fi),

where H denotes Shannon entropy, B is the random variable corresponding to the blog
number, and Fi is the random variable corresponding to feature i. Since the features are

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 66

Feature Information Gain in Bits

Frequency of ’ 1.097
Number of characters 1.077
Freq. of words with only first letter uppercase 1.073
Number of words 1.060
Frequency of (NP, PRP)

1.032
(noun phrase containing a personal pronoun)
Frequency of . 1.022
Frequency of all lowercase words 1.018
Frequency of (NP, NNP)

1.009
(noun phrase containing a singular proper noun)
Frequency of all uppercase words 0.991
Frequency of , 0.947

Table 5.2: The top ten features by information gain.

real-valued, and entropy is defined only for discrete random variables,2 we need to sensibly
map them to a set of discrete values. For each feature, we partitioned the range of observed
values into twenty intervals. We reserved one bin for the value zero, given the sparsity of our
feature set; the other nineteen bins were selected to contain approximately equal numbers
of values across all the posts in the dataset.

A portion of the result of this analysis is given in Table 5.2, which lists the ten features
with greatest information gain when computed as described; an extended version listing the
top thirty appears in Appendix D. Several other binning methods were found to produce
similar results. Base-two logarithms were used in the entropy computation, so the values
given correspond to quantities of bits. With information gains ranging from 1.097 to 0.947,
these features can all be considered roughly equal in utility. Perhaps least surprisingly, the
length of posts (in words and characters) is among the best indicators of the blog the posts
were taken from. Several punctuation marks also appear in the top ten, along with the three
most common patterns of upper and lowercase letters and two syntactic category pairs. The
information gains of all 1,188 features are shown in Figure 5.2 (a).

To give a sense of the typical variation of feature values both within a blog and between
different blogs, Figure 5.2 (b) displays a representative example of one of the ten features in
Table 5.2: the frequency of all lowercase words. The plot was generated by sorting the 100,000
blogs according to the mean of this feature across their posts. The means are shown by the
solid line, and the values for individual posts are plotted as dots. For legibility, the figure
only shows every third post of every one hundredth blog. As one might expect, the values

2A definition also exists for continuous random variables, but applying it requires assuming a particular
probability mass function.

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

In
fo

rm
a
ti

o
n
 G

a
in

 i
n
 B

it
s

Feature Number

(a) The information gain of all features.

 0 20000 40000 60000 80000 100000
0.6

0.7

0.8

0.9

1.0

Fr
e
q

u
e
n
cy

 o
f

A
ll

Lo
w

e
rc

a
se

 W
o
rd

s

Blog Number

(b) Per-post values (dots) and per-blog means
(line) of an example feature across the dataset.

Figure 5.2: The information gain of each feature and sample values for one feature.

vary from post to post by much larger amounts than the differences in mean between most
pairs of blogs, indicating that this feature alone carries a fairly small amount of information.
The corresponding plots for features with lower information gain look similar, but with
less variation in means or more variation between individual posts from the same author.
The two plots in Figure 5.2 make it clear that many features will need to be considered in
combination if we are to effectively identify authors.

5.4 Classifiers

To conduct the two types of experiments described in Section 5.2, we used three types
of classifiers: nearest neighbor, naive Bayes, and support vector machine. The first two of
these are particularly straightforward to implement, and we used a freely available tool for the
third [51], indicating that results similar to ours could be obtained by even an unsophisticated
adversary. In describing each of these algorithms, we denote a labeled example as a pair
(~x, y), where ~x ∈ Rn is a vector of features and y ∈ {1, 2, . . . ,m} is the label. In our case,
n = 1, 188, the number of features; and m = 100, 000, the number of blogs in our dataset.
After training a classifier on the labeled examples, we present it with one or more unlabeled
examples ~x1, ~x2, . . ., test posts taken from a single blog in the case of post-to-blog matching
experiments, or an entire blog in the case of blog-to-blog matching. In either case, we rank

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 68

the labels {1, 2, . . . ,m} according to our estimate of the likelihood that the corresponding
author wrote the unlabeled posts. One key difference between both of our experiments and
the typical classification scenario is that we know that ~x1, ~x2, . . . have the same label.

Nearest neighbor. In the case of our nearest neighbor classifier, we begin by preprocessing
the data in two ways that help to improve performance. First, we rescale each feature so that
its mean over the entire training set is one; this is accomplished by dividing each feature value
in each post by the mean of that feature. After doing so, for each post, we scale its vector
of features to have Euclidean norm one. The training phase then proceeds by averaging the
values of each feature over all the posts of a blog, forming a vector (µ1, . . . , µn) of feature
means that serves as a “fingerprint” for the blog. Like the vectors for the original posts, we
also normalize each of these fingerprints so it has length one.

When given a series of unlabeled posts ~x1, ~x2, . . . for classification, we again average the
value of each feature over the available posts, producing a fingerprint for the posts to be
classified. This fingerprint is also normalized to have length one. Finally, we compute the
Euclidean distance between the fingerprint of the posts and the fingerprint of each blog in
turn and sort the blogs by distance to produce our ranking.

Naive Bayes. Our naive Bayes classifier is similar to the nearest neighbor classifier, but
takes into account the variance of each feature in addition to its mean. Specifically, the
training phase for each blog consists of computing the mean µi and variance σ2

i of each feature
i over that blog’s posts. A small-sample correction of 5× 10−6 is added to each variance to
prevent any from being exactly zero.3 Then given an unlabeled post ~x = (x1, . . . , xn), we
assign a blog with means (µ1, . . . , µn) and variances (σ2

1, . . . , σ
2
n) the score

n∑
i=1

− log(σ2
i)−

(xi − µi)2

σ2
i

and rank the blogs according to their score, with greater (i.e., less negative) scores indicating
that authorship is more likely. If more than one unlabeled post is available, we compute each
score as above, but summing over the features in all the unlabeled posts. Frequently arising in
naive Bayes classifiers, the above expression is obtained by fitting a Gaussian to each feature
and assuming the features are independent given the label (the naive assumption). Since we
only aim to rank the labels by their probability of producing a sample, we take the logarithm
of each probability to simplify the calculations, then remove terms that affect each probability
equally, resulting in the “score” computed for each blog. Our naive Bayes classifier was found

3This will occur, for example, whenever one particular function word is not used in any of the posts of
a blog that appear in the training set. If a small-sample correction were not used and that word appeared
in an unlabeled post, the zero variance would prevent that blog from being selected no matter what other
evidence was present.

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 69

to perform best when given only the 400 features with greatest information gain; the other
two classifiers used the entire feature set.

Support vector machine. While support vector machines were originally formulated
for binary classification [12, 35], several methods exist for applying them to classification
problems with more than two labels. Due to the very large number of labels in our case,
we employ the one-versus-all strategy for reducing the problem to training a series of binary
SVMs, one for each label. During training, each SVM is given all posts of the corresponding
blog that are in the training set as positive examples and a selection of posts from other
blogs as negative examples. Ideally, we would provide each SVM with all posts from other
blogs as negative examples. Since the large size of our dataset makes this infeasible, we
instead use the posts from a sample of 1,000 other blogs as negative examples. To improve
the ability of an SVM to distinguish between its associated blog and other, similar blogs, we
ensure that this set of 1,000 blogs includes the 100 that are “nearest” to it, using the same
notion of Euclidean distance between fingerprints that we explained in the description of the
nearest neighbor classifier. The remaining 900 are selected uniformly at random.

To classify a single unlabeled post, we present it to each SVM and record the resulting
margins between the post and each of the separating hyperplanes. When we instead have a
group of unlabeled posts by the same author, we sum the margins resulting from classifying
each post separately. To produce the ranked list of authors for the post(s), we sort the labels
by the margins we obtained from the corresponding SVMs. Larger (more positive) margins
indicate a higher likelihood that the corresponding label applies to the new post(s) while
smaller (more negative) margins indicates a lower likelihood.

As with our nearest neighbor classifier, we rescaled each feature such that its mean would
be one and normalized each post to be of length one before training the SVMs. No kernel
function was used.

5.5 Experimental Results

In Figures 5.3 and 5.4, which summarize our most important results, we provide the full
distribution of outcomes obtained by applying the three classifiers to the two types of exper-
iments introduced in Section 5.2. We now give the details of the procedure used to obtain
these results.

In each trial of the first experiment, post-to-blog matching, we randomly selected three
posts of one blog and set them aside as the testing data. The three classifiers were then
used to rank each blog according to its estimated likelihood of producing the test posts. Of
course, we were careful to ensure that the classifiers were not given the test posts during
training. For this experiment, we only selected blogs from the Spinn3r dataset as the source
of test posts, but we used the classifiers to rank all 100,000 blogs. In each trial, we recorded
the rank of the correct blog; Figure 5.3 displays the CDF of these rankings.

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 P

o
rt

io
n
 o

f
Tr

ia
ls

Rank of Correct Blog out of 100,000

Nearest neighbor
Naive Bayes
SVM

Figure 5.3: Results of the post-to-blog matching experiments, using three posts (roughly 900
words).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 P

o
rt

io
n
 o

f
Tr

ia
ls

Rank of Correct Blog out of 99,999

Nearest neighbor
Naive Bayes
SVM

Figure 5.4: Results of the blog-to-blog matching experiments.

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 P

o
rt

io
n
 o

f
Tr

ia
ls

Rank of Correct Blog out of 100,000

Top 400 features by information gain
Single character frequencies only
Function words only
Syntactic category pairs only
Other 38 features only

Figure 5.5: Post-to-blog matching using three posts and naive Bayes while limiting the
feature set. The full feature set used in the other experiments is shown by the solid line for
comparison.

Each trial of the blog-to-blog matching experiment consisted of randomly selecting one
of the blogs obtained from the Google profiles, then ranking the other 99,999 blogs based on
their similarity to its posts. The rank of the other blog listed on the same Google profile was
then saved as the outcome, producing the results given in Figure 5.4. In the (uncommon)
case of more than one additional blog listed on the Google profile, the highest ranked was
considered the outcome, on the grounds that an adversary would be interested in linking an
anonymous blog to any material from the same author.

Several interesting results can be directly read off the graphs. Tracing up from the x-
axis in Figure 5.3, we see that the naive Bayes classifier ranked the correct blog first in
approximately 8% of trials (its classification accuracy) and within the top ten in about 15%
of trials. In the case of blog-to-blog matching, the nearest neighbor classifier ranked a blog
from the correct author first and within the top ten in approximately 12% and 20% of trials,
respectively. No one algorithm was clearly superior to the other two. While the naive Bayes
and nearest neighbor classifiers achieved higher accuracies, the SVM classifier produced the
best median outcomes. This can be seen by tracing right from the y-axis, which reveals
median rankings of about 400 and 900 in the two experiments. With a one-half chance
of finding the correct blog both above and below these rankings, they can be considered
the most typical outcomes. Considering the fact that we are applying methods not (to our
knowledge) previously used on more than 300 authors, we find these results for 100,000
authors to be surprisingly good.

To help confirm the validity of these results, we manually inspected a small sample of the
blogs that were most easily matched in each experiment, since these would be the ones most

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 72

likely to contain any post signatures or other illegitimate text that might have escaped our
filtering. Nothing that could significantly affect the results was found. As a further check,
we reran the experiments with the naive Bayes classifier while using only subsets of our
features, in order to determine whether one particular type of feature was especially crucial
to its performance. The results for post-to-blog matching are shown in Figure 5.5, along with
the original naive Bayes results4 from Figure 5.3 for comparison. While performance suffers
with the limited feature sets, it is clear that no one type of feature is strictly necessary for
effective matching. For example, with the full feature set, the correct blog is in the top 100
in 25% of trials, but only 38 features are necessary to achieve the same result in 10% of trials.
The case of blog-to-blog matching with the limited feature sets is similar: performance is
reduced, but not overwhelmingly.

The next two graphs shown help elucidate the relationship between the identifiability of
an author and the amounts of labeled and unlabeled content available. Figure 5.6 displays
the result of repeating the post-to-blog matching experiment with only one unlabeled post
rather than three. At an average of 305 words, one post is similar in size to a comment on a
news article or a message board post, so these results are indicative of the ability to match
an isolated online posting against our blog corpus. While the identifiability of such small
amounts of text is markedly reduced, we still achieve approximately 4% accuracy with the
naive Bayes classifier and a median rank of about 2,500 with the SVM classifier.

Referring back to Figure 5.3, the significant difference between the tenth percentile and
median outcomes (for naive Bayes, rankings of 2 and about 2,000 respectively) suggests that
some blogs may be considerably more identifiable than others. Unsurprisingly, much of this
difference is explained by the size of the blog and resulting amount of labeled content, as
shown in Figure 5.7. The largest blogs, with at least 16,000 words (roughly 50 posts) are
ranked within the top 100 out of 100,000 by naive Bayes in 60% of trials, and ranked first
in about 27%. On the other hand, for blogs of less than 2,000 words (excluding the three
test posts), those numbers are reduced to about 23% and 3%. This suggests that authors
who wish to publish anonymously should consider the amount of material they have already
written that appears online.

4Recall that we found this classifier to perform best with the 400 features with greatest information gain
rather than all 1,188.

CHAPTER 5. INTERNET-SCALE AUTHOR IDENTIFICATION 73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 P

o
rt

io
n
 o

f
Tr

ia
ls

Rank of Correct Blog out of 100,000

Nearest neighbor
Naive Bayes
SVM

Figure 5.6: Post-to-blog matching using only one post (roughly 300 words).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 P

o
rt

io
n
 o

f
Tr

ia
ls

Rank of Correct Blog out of 100,000

> 16K words
8K to 16K words
4K to 8K words
2K to 4K words

< 2K words

Figure 5.7: Post-to-blog matching results using three posts and naive Bayes, by amounts of
labeled content.

75

Chapter 6

Conclusions and Future Work

In this work, we’ve presented a collection of new cryptographic tools aimed at giving
individuals more control over their identity. Through our proposal for signatures of reputa-
tion, we hope to enable future applications which allow anonymous, yet credible publication
of information, and our scheme for private stream searching is intended to enable retrieval of
information while placing similar protections on the user’s privacy. Many problems remain
for future research. While feasible with current technology, both schemes are too costly
to be used in situations where they provide only a minor benefit; more efficient solutions
would be more broadly applicable. Our signatures of reputation support only monotonic
reputation, but in many applications, “bad” reputation is the most important kind. Finding
a way to support negative feedback will require innovative definitions as well as crypto-
graphic constructions. Other challenges include devising a scheme which maintains privacy
despite a malicious registration authority or, more ambitiously, replaces it with an entirely
decentralized approach to limiting the Sybil attack.

The final area of research presented in this document suggests fundamental limitations
to anonymous speech, regardless of the aforementioned methods. If what is said is intrinsi-
cally linked to the person who said it, no cryptographic tools can give the ability to speak
both publicly and anonymously. Our findings have shown that individuals who have already
authored large amounts of publicly available text may no longer be able to publish anony-
mously. Fortunately, it is not yet clear that a significant risk of identification through writing
style exists for the broader population. However, our results can only be interpreted as a
lower bound on the severity of this risk, which is likely to increase over time.

77

Bibliography

[1] Ahmed Abbasi and Hsinchun Chen. Writeprints: A stylometric approach to identity-
level identification and similarity detection in cyberspace. ACM Transactions on Infor-
mation Systems, 26(2), March 2008.

[2] Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and Tal Malkin. Reputation
systems for anonymous networks. In Privacy Enhancing Technologies, 2008.

[3] Michael Arrington. AOL proudly releases massive amounts of user search data.
TechCrunch News, August 2006.

[4] Man Ho Au, Willy Susilo, and Yi Mu. Practical anonymous divisible e-cash from
bounded accumulators. In Financial Cryptography, 2008.

[5] Man Ho Au, Q. Wu, Willy Susilo, and Yi Mu. Compact e-cash from bounded accumu-
lator. In CT-RSA, 2007.

[6] Eric Backer and Peter van Kranenburg. On musical stylometry–a pattern recognition
approach. Pattern Recognition Letters, 26(3):299 – 309, 2005.

[7] Lars Backstrom, Cynthia Dwork, and Jon M. Kleinberg. Wherefore art thou r3579x?
In International World Wide Web Conference, 2007.

[8] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya,
and Hovav Shacham. Randomizable proofs and delegatable anonymous credentials. In
Crypto, 2009.

[9] Mira Belenkiy, Melissa Chase, Chris Erway, John Jannotti, Alptekin Kupcu, Anna
Lysyanskaya, and Eric Rachlin. Making p2p accountable without losing privacy. In
WPES, 2007.

[10] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Non-
interactive anonymous credentials. In TCC, 2008.

[11] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy
in public-key encryption. In Asiacrypt, 2001.

BIBLIOGRAPHY 78

[12] Isabelle Guyon Bernhard E. Boser and Vladimir Vapnik. A training algorithm for
optimal margin classifiers. In COLT, pages 144–152, 1992.

[13] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7):422–426, 1970.

[14] James Bone. Vogue model Liskula Cohen wins right to unmask offensive blogger. The
Times, August 2009.

[15] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2), 2008.

[16] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Crypto,
2004.

[17] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Guiseppe Persiano. Public
key encryption with keyword search. In Eurocrypt, 2004.

[18] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Theory of Cryptography Conference, 2005.

[19] Joseph K. Bradley, Patrick Gage Kelley, and Aaron Roth. Author identification from
citations. Technical report, Carnegie Mellon University, December 2008.

[20] Michael Brennan and Rachel Greenstadt. Practical attacks against authorship recogni-
tion techniques. In IAAI, 2009.

[21] Andrei Broder and Michael Mitzenmacher. Network applications of Bloom filters: A
survey. Internet Mathematics, 1(4):485–509, 2005.

[22] Jeff Brumley. Unmasked blogger blames First Baptist, sheriff’s office. The Florida
Times-Union, April 2009.

[23] K. Burton, A. Java, and I. Soboroff. The ICWSM 2009 Spinn3r dataset. In International
AAAI conference on weblogs and social media, 2009.

[24] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In Eurocrypt, 1999.

[25] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to win the clone wars: Efficient periodic n-times anonymous authen-
tication. In CCS, 2006.

[26] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Eu-
rocrypt, 2005.

BIBLIOGRAPHY 79

[27] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing accountability
and privacy using e-cash. In Security and Cryptography for Networks (SCN), 2006.

[28] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In PKC, 2009.

[29] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In IEEE
Symposium on Security and Privacy, 2007.

[30] Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete
logarithms. Technical Report 260, Inst. for TCS, ETH Zurich, 1997.

[31] Yan-Cheng Chang. Single database private information retrieval with logarithmic com-
munication. In Information Security and Privacy (ACISP), 2004.

[32] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords.
Technical Report CS0917, Department of Computer Science, Technion, 1997.

[33] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In Foundations of Computer Science (FOCS), 1995.

[34] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9:251–280, 1990.

[35] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning,
volume 20, pages 273–297, 1995.

[36] Ingemar Cox, Matthew Miller, and Jeffery Bloom. Digital Watermarking. Morgan
Kaufmann, 2002.

[37] Ivan Damgard, Jens Groth, and Gorm Salomonsen. The theory and implementation of
an electronic voting system. In Secure Electronic Voting, 2003.

[38] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Public Key Cryptography (PKC), 2001.

[39] Olivier Y. de Vel, Alison Anderson, Malcolm Corney, and George M. Mohay. Mining
email content for author identification forensics. SIGMOD Record, 30(4):55–64, 2001.

[40] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In USENIX Security Symposium, 2004.

[41] John R. Douceur. The Sybil attack. In International Workshop on Peer-to-Peer Systems,
2002.

BIBLIOGRAPHY 80

[42] George Forman. An extensive empirical study of feature selection metrics for text
classification. Technical report, Hewlett-Packard Labs, 2002.

[43] Freedman, Ishai, Pinkas, and Reingold. Keyword search and oblivious pseudorandom
functions. In Theory of Cryptography Conference (TCC), 2005.

[44] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In Eurocrypt, 1999.

[45] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

[46] Jens Groth. Evaluating security of voting schemes in the universal composability frame-
work. In ACNS, 2004.

[47] Jens Groth. Non-interactive zero-knowledge arguments for voting. In ACNS, 2005.

[48] Jens Groth. Fully anonymous group signatures without random oracles. In Asiacrypt,
2007.

[49] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Eurocrypt, 2008.

[50] Shawndra Hill and Foster J. Provost. The myth of the double-blind review? Author
identification using only citations. SIGKDD Explorations, 5(2):179–184, 2003.

[51] Thorsten Joachims. Making large-scale SVM learning practical. In Advances in Kernel
Methods—Support Vector Learning, 1999.

[52] Patrick Juola. Authorship attribution. Foundations and Trends in Information Re-
trieval, 1:233–334, December 2006.

[53] Gary Kacmarcik and Michael Gamon. Obfuscating document stylometry to preserve
author anonymity. In Meeting of the Association for Computational Linguistics, 2006.

[54] J. Kahn, J. Komlós, and E. Szemerédi. On the probability that a random ±1 matrix is
singular. Journal of the American Mathematical Society, 8(1):223–240, 1995.

[55] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, 2006.

[56] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Meeting of
the Association for Computational Linguistics, pages 423–430, 2003.

[57] J. Komlós. On the determinant of (0,1)-matrices. Studia Math. Hungarica, 2:7–21, 1967.

[58] Kaoru Kurosawa and Wakaha Ogata. Oblivious keyword search. Journal of Complexity,
20, 2004.

BIBLIOGRAPHY 81

[59] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Foundations of Computer Science
(FOCS), 1997.

[60] Richard Leiby. The Hill’s sex diarist reveals all (well, some). The Washington Post,
May 2004.

[61] Wei-Jen Li, Ke Wang, S J Stolfo, and B Herzog. Fileprints: identifying file types
by n-gram analysis. In IEEE Systems, Man, and Cybernetics Information Assurance
Workshop, 2005.

[62] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Information Security Conference (ISC), 2005.

[63] Ben Lynn. The Pairing-Based Cryptography (PBC) library.
http://crypto.stanford.edu/pbc.

[64] Philip MacKenzie, Michael Reiter, and Ke Yand. Alternatives to non-malleability:
definitions, constructions, and applications. In TCC, 2004.

[65] David Madigan, Alexander Genkin, David D. Lewis, Shlomo Argamon, Dmitriy Fradkin,
and Li Ye. Author identification on the large scale. In Joint Meeting of the Interface
and Classification Society of North America, 2005.

[66] H. Maurer, F. Kappe, and B. Zaka. Plagiarism—a survey. Journal of Universal Com-
puter Science, 12(8):1050–1084, 2006.

[67] Ralph C. Merkle. A certified digital signature. In Crypto, 1989.

[68] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, 84(5):1234–1243, 2001.

[69] F Mosteller and D L Wallace. Inference and Disputed Authorship: The Federalist.
Addison-Wesley, 1964.

[70] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Sym-
posium on Theory of Computing (STOC), 1999.

[71] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In IEEE Symposium on Security and Privacy, 2008.

[72] Rafail Ostrovsky and William Skeith. Private searching on streaming data. In Crypto,
2005.

BIBLIOGRAPHY 82

[73] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
1999.

[74] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Eurocrypt, 1999.

[75] Daniele Perito, Claude Castelluccia, Mohamed Ali Kaafar, and Pere Manils. How unique
and traceable are usernames? http://arxiv.org/abs/1101.5578v3, 2011.

[76] Franziska Pingel and Sandra Steinbrecher. Multilateral secure cross-community repu-
tation systems for internet communities. In TrustBus, 2008.

[77] Maxim Shevertalov, Jay Kothari, Edward Stehle, and Spiros Mancoridis. On the use of
discretized source code metrics for author identification. In International Symposium
on Search Based Software Engineering, 2009.

[78] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Eurocrypt,
1997.

[79] Robert Silverman. A cost-based security analysis of symmetric and asymmetric key
lengths. Technical report, RSA Laboratories, November 2001.

[80] Dawn Xiaodong Song, David Wagner, and Adriane Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, 2000.

[81] Sandra Steinbrecher. Design options for privacy-respecting reputation systems within
centralised internet communities. In International Information Security Conference
(SEC), 2006.

[82] Sandra Steinbrecher. Enhancing multilateral security in and by reputation systems. In
FIDIS/IFIP Internet Security and Privacy Summer School, September 2008.

[83] Terence Tao and Van H. Vu. On random ±1 matrices: singularity and determinant. In
Symposium on Theory of Computing (STOC), pages 431–440, 2005.

[84] Terence Tao and Van H. Vu. On the singularity probability of random bernoulli matrices.
Journal of the American Mathematical Society, 20(3):603–628, 2007.

[85] Community forum policy, online edition of the Wall Street Journal. Retrieved from
http://online.wsj.com/ on April 25, 2010.

[86] G. Udny Yule. The Statistical Study of Literary Vocabulary. Cambridge University
Press, 1944.

83

Appendix A

The Hardness of SCDH in Generic
Groups

The SCDH (“stronger than CDH”) assumption may be stated as follows.
Let e : G1×G2 → GT be a bilinear map, where the groups G1,G2,GT are of prime order

p. Let ϕ : G2 → G1 be an efficiently computable isomorphism. Assume g2 is a generator of

G2 and let g1 = ϕ(g2). Let ρ ∈ Z∗p. Select r, s
R←− Zp \{−ρ}, h

R←− G1, u, v
R←− G2. Then given

ρ, g1, h, g2, u, v, u
r, vs, gr1, h

s, g
1
ρ+r

2 , g
1
ρ+s

2 ,

it is computationally infeasible to output a triple (z, zr, zs) ∈ G3
1 where z 6= 1.

We prove this in the generic group model [78] by providing an upper bound on the
probability that an adversary is able to output such a triple.

A.1 Generic Group Formulation of SCDH

In this model, we assume elements of G1, G2, and GT are identified only by random string
identifiers. Specifically, we identify the elements of G1 using an injective map ξ1 : Zp →
{0, 1}k selected uniformly at random, where k is sufficiently large that we will assume the
adversary cannot guess any valid element identifiers. For any x ∈ Zp, the identifier ξ1(x)
represents the element gx1 ∈ G1. The elements of G2 and GT are similarly identified via maps
ξ2 and ξ3. To select the random elements h, u, v, we select random exponents x, y1, y2 and
let h = gx1 , u = gy12 , and v = gy22 ; in this way their identifiers may be computed using ξ1 and
ξ2.

The adversary will start with the identifiers of the elements in the challenge and must
query an oracle O to compute the group operation in any of the three groups, to evaluate the
bilinear map, or to evaluate ϕ. Upon termination, it must output three strings π, π′, π′′ ∈
{0, 1}k. If there exists a z ∈ Zp such that π = ξ1(z), π′ = ξ1(zr), and π′′ = ξ1(zs), then the
adversary has won the game.

APPENDIX A. THE HARDNESS OF SCDH IN GENERIC GROUPS 84

Theorem A.1.1. For any adversary A making at most q queries to the oracle O,

Pr

 AO
(
p, ρ, ξ1(1), ξ1(x), ξ1(r), ξ1(xs), ξ2(1), ξ2(y1),

ξ2(y2), ξ2(y1r), ξ2(y2s), ξ2

(
1
r+ρ

)
, ξ2

(
1
s+ρ

)) = π, π′, π′′ ∧

∃z ∈ Zp such that π = ξ1(z), π
′ = ξ1(zr), and π′′ = ξ1(zs)

∣∣∣∣∣ x, y1, y2
R←− Zp

r, s
R←− Zp \ {−ρ}

∣∣∣∣∣
 ≤ 24(q + 11)2

p
.

Our proof employs the following strategy. First, we define an alternative (the “formal
game”) to the real game described above. Next, we show that it is impossible for the

adversary to win the formal game. Finally, we show that with probability at least 1− 24(q+11)2

p
,

the view of an adversary that played the formal game is identical to what their view would
have been if they were playing the real game.

A.2 Formal Game

In this version of the game, the oracle O ignores the actual values of x, y1, y2, r, and s
and instead treats them as formal variables X, Y1, Y2, R, and S (the exponent ρ is treated
differently, as will be explained).

Specifically, O maintains three lists L1, L2, L3 of pairs. In each pair (π, F), π is an
identifier string and F is a rational function with indeterminates X, Y1, Y2, R, S. That is, F
is a member of the field of rational functions Zp(X, Y1, Y2, R, S). The elements of the field
Zp(X, Y1, Y2, R, S) may be considered to be (multivariate) polynomial fractions P

Q
, where P

and Q are in the polynomial ring Zp[X, Y1, Y2, R, S]. More precisely, F is an equivalence class
of such fractions, where P1

Q1
= P2

Q2
if P1Q2 = P2Q1. In the following, we identify a rational

function F with the representative element of its equivalence class P
Q

that is written in lowest

terms (i.e., gcd(P,Q) = 1).
Each list is initialized with the identifiers of and the polynomial fractions corresponding

to the challenge values in each of the three groups. So initially

L1 = ((π1,1, 1), (π1,2, X), (π1,3, R), (π1,4, XS))

L2 =

(
(π2,1, 1), (π2,2, Y1), (π2,3, Y2), (π2,4, Y1R), (π2,5, Y2S),

(
π2,6,

1

R + ρ

)
,

(
π2,7,

1

S + ρ

))
L3 = () .

Note that only X, Y1, Y2, R, and S are indeterminates in the above polynomial fractions; ρ
is simply a constant in Zp. Now whenever the adversary makes a query to perform the group
operation in G1 on π1,i and π1,j (including a selection bit specifying whether they wish to
multiply or divide), we look up in list L1 the corresponding polynomial fractions F1,i, F1,j

and compute F = F1,i ± F1,j. We check whether F (in a canonical form) already exists
in L1 and, if so, return the corresponding identifier. Otherwise, we randomly select a new
identifier π and append (π, F) to L1. Queries for the group operations in G2 and GT are

APPENDIX A. THE HARDNESS OF SCDH IN GENERIC GROUPS 85

answered analogously. To answer queries for the bilinear map, we compute F = F1,i · F2,j

and check L3 for F , again, adding it if it was not already present. To answer queries for the
isomorphism ϕ applied to some F2,i, we simply check L1 for F2,i.

We now argue that it is impossible for the adversary to win when O responds to queries
using the rules of the formal game. In order to win, the adversary must construct polynomial
fractions F1,i1 , F1,i2 , and F1,i3 in L1, where F1,i2 = F1,i1 · R, F1,i3 = F1,i1 · S, and F1,i1 6= 0.
However, any F1,∗ which the adversary can construct in L1 is of the form

F1,∗ = a1 + a2X + a3R + a4XS + a5Y1 + a6Y2 + a7Y1R + a8Y2S +
a9

R + ρ
+

a10
S + ρ

,

where a1, . . . , a10 ∈ Zp.1 So if F1,i2 = F1,i1 ·R, then F1,i1 must be of the form F1,i1 = a3+a7Y1.
Similarly, if F1,i3 = F1,i1 · S, then F1,i1 must be of the form F1,i1 = a4X + a8Y2.

So if the adversary is to output a triple F1,i1 , F1,i2 , F1,i3 satisfying F1,i2 = F1,i1 · R and
F1,i3 = F1,i1 · S, then the only possibilities values for F1,i1 are

({a3 + a7Y1 | a3, a7 ∈ Zp} ∩ {a4X + a8Y2 | a4, a8 ∈ Zp}) \ {0} = ∅ .

Thus, the adversary cannot win when the oracle follows the rules of the formal game.

A.3 Real Game

Next, we argue that, with probability at least 1− 24(q+11)2

p
, an adversary playing the formal

game receives oracle query answers distributed identically to those it would have received in
the real game.

We might imagine two ways the formal game could differ from the real game. The first
would be for the oracle to give out a previously returned identifier when it should have
selected a new one. This would happen if the adversary made a query on two rational
functions and the result was formally identical to a previous rational function, but when
evaluated on the specific values x, y1, y2, r, s, the two differed. Of course, this cannot happen.
If two rational functions are identical, they will have the same value when evaluated.

The other way the formal game could differ from the real game would be for the oracle
to give out a new identifier when it should have given an existing one. That is, if the oracle
returned the identifier of a new rational function F1 = P1

Q1
which was not formally equal to

an existing one F2 = P2

Q2
(that is, P1Q2 6= P2Q1), but F1(x, y1, y2, r, s) = F2(x, y1, y2, r, s).

This case is indeed possible, but we argue that it occurs with probability (over the

selection of x, y1, y2, r, s) at most 24(q+11)2

p
. Specifically, F1(x, y1, y2, r, s) = F2(x, y1, y2, r, s)

iff
P1(x, y1, y2, r, s)Q2(x, y1, y2, r, s) = P2(x, y1, y2, r, s)Q1(x, y1, y2, r, s) ,

1Note that the adversary is capable of incorporating ρ into the values a1, . . . , a10, for example, setting
a1 = 4ρ or a3 = ρ−5.

APPENDIX A. THE HARDNESS OF SCDH IN GENERIC GROUPS 86

that is, iff

P1(x, y1, y2, r, s)Q2(x, y1, y2, r, s)− P2(x, y1, y2, r, s)Q1(x, y1, y2, r, s) = 0 .

So we see that the oracle only gives an incorrect reply to a query on F1 = P1

Q1
and F2 = P2

Q2
if

x, y1, y2, r, s is a root of the polynomial P1Q2−P2Q1. We bound the probability of x, y1, y2, r, s
being a root based on the degree of the polynomial.

Specifically, for any P1

Q1
and P2

Q2
in L1,

deg(P1Q2 − P2Q1) ≤ max(deg(P1Q2), deg(P2Q1))

= max(deg(P1) + deg(Q2), deg(P2) + deg(Q1))

≤ max(4 + 2, 4 + 2)

= 6 ,

so P1Q2 − P2Q1 will have at most 6 roots. The probability that a query for the group
operation in G1 will return the wrong result is thus at most 6

p
. The case of queries for the

group operation in G2 is similar and results in the same bound. If P1

Q1
and P2

Q2
are in list L3

(i.e., they are the result of pairing queries), we obtain the following bounds.

deg(P1Q2 − P2Q1) ≤ max(8 + 4, 8 + 4)

= 12 ,

So the probability of that type of query being answered incorrectly is at most 12
p

.
Now since the adversary is initially given 11 identifiers and makes at most q queries,

the number of distinct queries it can make for either the group operation in G1, the group
operation in G2, or the pairing is at most (q + 11)2. So the total probability of at least one
query being answered incorrectly is at most

(q + 11)2
6

p
+ (q + 11)2

6

p
+ (q + 11)2

12

p
=

24(q + 11)2

p
.

87

Appendix B

Proofs for the Signature of
Reputation Scheme

B.1 Unforgeability of the Signature Scheme

We distinguish the following four types of forgeries which the adversary may attempt.

• Type 1 forgery. In the forgery, the adversary uses a ρ∗ value that never appeared.
This will break the BB-HSDH assumption by a trivial reduction.

• Type 2 forgery. In the forgery, the adversary uses ρ∗ = ρj, but there exists k, such
that r∗k 6= rj,k.

– Case 1: r∗k = γ.

This breaks the BB-CDH assumption.

Suppose the simulator obtains a BB-CDH instance (see Section 2.2).

The adversary commits to q messages to be signed. The simulator chooses the
parameters of the signature scheme, such that the variables γ, g, ĝ inherit the
corresponding variables from the BB-CDH instance. For all 1 ≤ i ≤ `, the
simulator also chooses ûi = ûτi , such that it knows their discrete logs τi (base û).
The remaining parameters are picked directly.

In the q signatures returned to the adversary, the simulator uses ρ = ρ1, . . . , ρq
respectively. Although the simulator does not know the secret signing key γ, it
clearly has enough information to compute the signatures shown to the signature
adversary.

When the adversary outputs a Type 2-Case 1 forgery, it contains the term ûγk.
As the simulator knows the discrete log of ûk base û, it can compute ûγ, thereby
breaking the BB-CDH assumption.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 88

– Case 2: r∗k ∈ {rj,1, . . . , rj,`, sj,1, . . . , sj,`}\{rj,k}.
Similar to Case 1, this also breaks the BB-CDH assumption. In particular, by
renaming variables and letting q = 1, the BB-CDH assumption immediately im-
plies the following assumption henceforth referred to as BB-CDH-1. Given the
tuple

g, ĝ, gr, ĝr, û, ρ, ĝ
1
r+ρ ,

it is computationally infeasible to output ûr.

We now show that if an adversary can succeed in a Type 2-Case 2 forgery, we can
build a simulator that breaks the above BB-CDH-1 assumption.

The adversary first commits to q messages to be signed. The simulator guesses
the j and k′ 6= k such that ρ∗ = ρj and r∗k = rj,k′ . The case when r∗k = sj,k′′
(1 ≤ k′′ ≤ `) is similar, so here, without loss of generality, we prove the case for
r∗k = rj,k′ .

When choosing parameters, the simulator inherits the g, ĝ values from the BB-
CDH-1 instance. The simulator lets ûk = û. For i 6= k, the simulator picks

ûi = ĝτi . The simulator picks f1 = x−1j,k′g
τ where τ

R←− Zp. The simulator picks
the remaining parameters directly.

Now the simulator computes the signatures for the q messages specified by the ad-
versary at the beginning of the game. For all except the j-th (message, signature)
pair, the simulator computes all other signatures directly.

For the j-th signature, the simulator builds the ρ value from the BB-CDH-Derived
instance into the signature: ρj = ρ. In addition, it builds the r value into the k′-th
coordinate, that is, the simulator implicitly lets rj,k′ = r. Although the simulator
does not know r, it can compute the term ûrk′ as it knows the discrete log of ûk′
base ĝ. In addition, the term (xj,k′f1)

r = (gr)τ can also be computed partly due
to the way f1 was chosen earlier. It is clear that the rest of the signature can be
computed directly.

If the adversary outputs a forgery of this type, the forged signature contains
ûrk = ûr, thereby breaking the BB-CDH-1 assumption.

– Case 3: r∗k /∈ {rj,1, . . . , rj,`, sj,1, . . . , sj,`}, and and r∗ 6= γ. This breaks the BB-
HSDH assumption. In particular, by renaming variables, and letting q = 2` + 1,
the BB-HSDH assumption states that given

ĝ, ĝρ, û, g, gρ, γ, g
1

ρ+γ , (ri, ĝ
1

ρ+ri)1≤i≤`, (si, ĝ
1

ρ+si)1≤i≤`

it is hard to output (gr
∗
, ûr

∗
, g

1
ρ+r∗), where r∗ /∈ {r1, . . . , r`, s1, . . . , s`, γ}. The

simulator obtains this instance, and performs the following interactions with the
adversary. The adversary first commits to q messages to be signed. Now the

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 89

simulator picks the parameters of the signature scheme to inherit the g, ĝ, γ vari-
ables from the above BB-HSDH instance. It picks h = gτ1 ,ĝ0 = ĝτ2 , so that the
simulator knows the exponents τ1, τ2, and can compute hρ and ĝρ0 from gρ and ĝρ

respectively. For all 1 ≤ i ≤ `, the simulator picks ûi = ûµi . The simulator picks
the remaining parameters directly.

The simulator guesses the j in which ρ∗ = ρj. In the j-th signature returned to
the adversary, the simulator uses the ρ and {ri, si}1≤i≤` values from the above
BB-HSDH instance. It is not hard to see that the simulator has sufficient infor-
mation to compute a signature for the j-th message. For all other q−1 (message,
signature) pairs, the simulator computes their signatures directly.

If the adversary can succeed in a forgery of this case, the simulator can obtain the

tuple (gr
∗
k , û

r∗k
i = (ûr

∗
k)µk , ĝ

1
ρ+r∗

k), thereby solving the above BB-HSDH instance.

• Type 3 forgery. In the forgery, the adversary uses ρ∗ = ρj, r
∗
j = rj,i for all 1 ≤ i ≤ `,

but there exists k, such that s∗k 6= sj,k. The proof is similar to Type 2 forgery.

• Type 4 forgery. In the forgery, the adversary uses ρ∗ = ρj, r
∗
j = rj,i and s∗j = sj,i

for all 1 ≤ i ≤ `, but there exists a k such that x∗k 6= xj,k. This breaks the SCDH
assumption through the following reduction. The simulator is given an SCDH instance
(see Section 2.2), and performs the following interactions with the adversary.

The adversary first commits to q messages to be signed. The simulator guesses the j in
which ρ∗ = ρj,∀i : r∗i = rj,i and s∗i = sj,i. When setting up parameters of the signature
scheme, the simulator inherits the ĝ, g, h value from the above SCDH instance. For
all 1 ≤ i ≤ `, it lets ûi = ûµi , v̂i = v̂νi . The simulator also lets f1 = x−1j,kg

τ , and

f2 = x−1j,kh
ωwhere τ, ω

R←− Zp.
Now the simulator constructs signatures on the q specified messages and return them to
the adversary. Except for the j-th (message, signature) pair, the simulator constructs
all other (message, signature) pairs directly.

For the j-th signature, the simulator uses the following strategy. It builds the ρ value
from the SCDH instance into the j-th signature, that is ρj = ρ. In addition, it builds the
r, s values from the SCDH instance into the k-th coordinate, that is, rj,k = r, sj,k = s.
Although the simulator does not know the values of r, s, it knows or can compute all of
the following terms in the signature. In particular, (xj,kf1)

r = (gr)τ , (xj,kf2)
s = (hs)ω.

ûrk and v̂sk can be computed as the simulator knows their discrete logs base û and v̂
respectively. All the remaining terms are trivially computable.

If the adversary success in a Type 3 forgery, the resulting signature contains (x∗, (x∗f1)
r,

(x∗f2)
s) where x∗ 6= xj,k. The simulator can thereby compute z, zr, zs, where z =

x∗x−1j,k 6= 1, by dividing (x∗, (x∗f1)
r, (x∗f2)

s) and (xj,k, (xj,kf1)
r, (xj,kf2)

s) coordinate-
wise. This clearly breaks the SCDH assumption.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 90

B.2 IK-CPA Security: Definition and Proof

IK-CPA security was first defined by Bellare et. al. [11]. The IKEnc described in Section 2.2
has IK-CPA security, that is, no polynomial-time adversary has more than negligible advan-
tage in the following game:

Setup. The challenger returns to the adversary the public parameters of the encryption
system paramsike, and two user public keys upkike,0 and upkike,1.

Challenge. The adversary submits two messages msg0 and msg1. The challenger flips a
random coin b, and returns IKEnc.Enc(paramsike, upkike,b,msgb) to the adversary.

Guess. The adversary outputs a guess b′ of b. The adversary wins the game if b′ = b.

Remark 1. The above security definition should still hold when upkike,0 = upkike,1 = upkike.
In this case, the security definition is equivalent to the standard IND-CPA security (under a
specific user public key upkike).

Proof. Consider the following hybrid sequence. In Game 0, the challenger encrypts msg0
under upkike,0 in the challenge stage. In Game R, the challenger returns to the adversary

a random ciphertext in the challenge stage, that is, (R1, R2, R3)
R←− G3. In Game 1, the

challenger encrypts msg1 under upkike,1 in the challenge stage.
Below we prove that Game 0 is computationally indistinguishable from Game M. (The

indistinguishability between Game 1 and Game M is similar, and hence omitted.)
Suppose a simulator obtains the following DLinear instance:

f, h, A,B
R←− G, f r, hs, T

It tries to distinguish whether T
R←− G or T = ArBs. See Definition 8 for more details on

this DLinear variant.
Now the simulator sets up the public parameters of the encryption scheme to be f, h. It

chooses upkike,0 = (A,B), and it picks (upkike,1, uskike,1) by directly calling the IKEnc.GenKey
algorithm. In the challenge stage, the adversary submits two messages msg0 and msg1. The
simulator returns the following ciphertext to the adversary:

msg0 · T, f r, hs

It is not hard to see that if T = ArBs, then the above simulation is identical to Game 0.
Otherwise, it is identical to Game R.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 91

B.3 Definitions and Proofs for the Unblinded Scheme

B.3.1 Definitions

Voter anonymity. No polynomial-time adversary has more than negligible advantage in
the following game.

Setup. The challenger gives the adversary all users’ rcvkey and vpk. At this stage, the
challenger retains all vsk to itself.

Corrupt. The adversary adaptively corrupts a user by learning its secret voting key vsk.

Vote. The adversary requests an unblinded vote from an uncorrupted voter to a recipient.

Challenge. The adversary submits two uncorrupted voters j∗0 and j∗1 , and a recipient i.
The adversary must not have previously queried a vote from either j∗0 or j∗1 to i. The
challenger flips a random coin b, and returns an unblinded vote from j∗b to i.

ShowRep. The adversary specifies a signer i, and a list of voters j1, . . . , jc, and signer i
constructs rep based on votes from these voters. Notice that this may involve votes
from j∗0 or j∗1 to i. rep is returned to the adversary.

Guess. The adversary outputs a guess b′ of b, and wins the game if b′ = b.

Vote unforgeability. No polynomial-time adversary has more than negligible advantage
in the following game.

Setup. The challenger gives the adversary all users’ rcvkey and vpk.

Corrupt. The adversary adaptively corrupts a user by learning its vsk.

Vote. The adversary requests a vote from an uncorrupted voter to a recipient.

ShowRep. The adversary specifies a signer i, and a list of voters j1, . . . , jc. User i con-
structs rep based on votes from these voters, and returns it to the adversary.

Forge. The adversary outputs a vote from an uncorrupted user j∗ to a recipient i∗. The
adversary wins if the vote is correct, and it has not previously queried a vote from j∗

to i∗.

Reputation anonymity. No polynomial-time adversary has more than negligible advan-
tage in the following game.

Setup. The challenger generates n users, and reveal all users’ keys including rcvkey, votekey
to the adversary.

Challenge. The adversary chooses a user i∗, and a list of c voters j1, . . . , jc. The challenger
flips a random coin b, and depending on the value of b, it returns to the adversary either
faithfully constructed rep, or a list of random numbers.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 92

Guess. The adversary outputs a guess b′ of b, and wins the game if b′ = b.

B.3.2 Reputation Anonymity Proof

We prove the DLinear based instantiation.

Definition 8 (n-DLinear). Given (g, h, z1,1, z1,2, z2,1, z2,2, . . . , zn,1, zn,2)
R←− G2n+2, and gr, hs,

where r, s
R←− Zp, it is computationally infeasible to distinguish the following tuple from a

completely random tuple:

T = (zr1,1z
s
1,2, z

r
2,1z

s
2,2, . . . , z

r
n,1z

s
n,2)

Proof. We now prove that the n-DLinear assumption is implied by the DLinear assumption.
Let 0 ≤ d ≤ n, let Γi = zri,1z

s
i,2. Define a hybrid sequence: in the Game d (0 ≤ d ≤ n), the

challenger gives the adversary g, h, gr, hs, z1,1, z1,2, z2,1, z2,2, . . . , zn,1, zn,2, and the following
tuple:

∗, ∗, . . . , ∗,Γd+1, . . . ,Γn

where each ∗ denotes an independent random element from G.
Due to the hybrid argument, it suffices to show that no PPT adversary can distinguish

any two adjacent games.
We now show that no PPT adversary can distinguish between Game d and Game

d − 1, where 1 ≤ d ≤ n. Suppose a simulator gets a DLinear instance g, h, f, gr, hs, X,

it tries to tell whether X = f r+s or X
R←− G. It picks zd,1 = f, zd,2 = fhτ . For all

i 6= d, the simulator picks zi,1 = gωi , zi,2 = hµi . Now the simulator gives the adversary
g, h, gr, hs, z1,1, z1,2, z2,1, z2,2, . . . , zn,1, zn,2, and the following tuple:

∗, ∗, . . . , ∗, X · (hs)τ , (gr)ωd+1(hs)µd+1 , . . . , (gr)ωn(hs)µn

Clearly, the above game is equivalent to Game d− 1 if X = f r+s. Otherwise, it is equivalent
to Game d.

Now we build a simulator that leverages an adversary against reputation anonymity to
break the n-DLinear assumption. When choosing all users’ upk and usk values, the simulator
inherits the zi,k values from the n-DLinear assumption, where 1 ≤ i ≤ n, k ∈ {1, 2}. It picks
xi,1 = gτi,1 , yi,1 = gωi,1 , and xi,2 = hτi,2 , yi,2 = hωi,2 for all 1 ≤ i ≤ n. It picks all other
parameters in upk and usk directly.

In the challenge phase, the simulator computes rep as below:

∀1 ≤ j ≤ m : urj,1u
s
j,2 = (x

αj
i,1y

βj
i,1)

r(x
αj
i,2y

βj
i,2)

s · Tj
where Tj is inherited from the n-DLinear instance. As the simulator knows the discrete-log
of xi,1 and yi,1 base g, and the discrete-log of xi,2 and yi,2 base h, the simulator can compute

the term (x
αj
i,1y

βj
i,1)

r(x
αj
i,2y

βj
i,2)

s.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 93

It is not hard to see that if T is a true n-DLinear tuple, the above constructed rep is
faithful. Otherwise, it is a random tuple.

B.3.3 Voter Anonymity Proof

Game 1: answering ShowRep queries at random. First, modify the voter anonymity
game such that when the adversary makes ShowRep queries, the challenger simply returns
a list of random numbers. Answering ShowRep queries randomly does not affect the adver-
sary’s advantage in winning the voter anonymity game.

To see why, observe that it is computationally infeasible to distinguish between Game 1
and the real voter anonymity game. This can concluded from reputation anonymity and a
simple hybrid argument.

Reduction to the DLinear assumption. We can now reduce voter anonymity to the
DLinear assumption.

Below, we prove the real-or-random version of voter anonymity.
Notice that DLinear implies that the following problem is hard: Given

g, h, gα, hβ, u1, v1, u2, v2, T

it is computationally infeasible to distinguish whether T = (uα1 v
β
1 , u

α
2 v

β
2) or T

R←− G2. In fact,
this is a special case of the n-DLinear assumption mentioned above, with n = 2.

• Setup. The simulator obtains the above 2-DLinear instance. It inherits the parameters
g, h from the 2-DLinear instance. It guesses the challenge voter j∗ and recipient i∗. It
picks xi∗,k = uk, yi∗,k = vk for k ∈ {1, 2}. For all i 6= i∗, pick xi,k = gτi,k , yi,k = hωi,k for
k ∈ {1, 2}. In addition, the simulator lets αj∗ = α, βj∗ = β. The remaining parameters
are picked directly. It is not hard to see that the simulator can compute all users vpk
and rcvkey, which the simulator releases to the adversary at the beginning of the game.

• Corrupt. If the targeted user is j∗, abort. Otherwise, return to the adversary the
user’s vsk.

• Vote. If the vote queried is from j∗ to i∗, abort. Otherwise, if the voter is j∗ and the
recipient is i 6= i∗, compute the vote as follows:

[(gα)τi,k(hβ)ωi,kzj∗,k]k∈{1,2}

Else if the voter is not j∗, compute the vote directly.

• ShowRep. Return a random tuple.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 94

• Challenge. If the challenger voter and recipient are not j∗ and i∗, abort. Otherwise,
return the following vote:

(T1zj∗,1, T2zj∗,2)

Clearly, if T = (T1, T2) is a true 2-DLinear instance, the above vote is correctly con-
structed. Otherwise, it is a random pair.

B.3.4 Vote Unforgeability Proof

• Setup. The simulator obtains a CDH instance g, gα, h. It tries to output hα.

The simulator guesses the voter j∗ and recipient i∗ in the forged vote output by the
adversary. It implicitly lets αj∗ = α. It picks xi∗,k = hτi∗,k where k ∈ {1, 2}. For any
user i 6= i∗, the simulator picks xi,k = gτi,k where k ∈ {1, 2}. The simulator picks the
remaining parameters directly. It is not hard to see that the simulator can compute all
users vpk and rcvkey, which the simulator releases to the adversary at the beginning of
the game.

• Corrupt. If the targeted user is j∗, abort. Otherwise, give away the user’s vsk to the
adversary.

• Vote. If the requested vote is from j∗ to i∗, abort. If the requested vote is from j∗ to
i 6= i∗, the simulator computes the vote as follows:

[(gα)τi,ky
βj∗

i,k zj∗]k∈{1,2}

If the requested vote is from j 6= j∗ to any user i, the simulator computes the vote
directly.

• ShowRep. Return a random tuple. Like in the voter anonymity game, this change
should not affect the adversary’s probability in winning the vote unforgeability game.

• Forge. When the adversary outputs a vote from j∗ to i∗, the simulator can compute
hα as below. First, denote the vote as (u1, u2). Now, compute hα as below:

(u1z
−1
j∗,1y

−βj∗
i∗,1)

1
τi∗,1

B.4 Proofs for the Full Scheme

Theorem B.4.1. The algorithms Setup, GenCred, GenNym, Vote, SignRep, and
VerifyRep defined in Section 2.3 constitute a correct, receiver anonymous, voter anony-
mous, signer anonymous, and sound scheme for signatures of reputation.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 95

In this section, we provide proofs for each of the four security properties defined in
Section 2.1. We begin by proving a series of lemmas we will need.

In the three privacy games (receiver, voter, and signer anonymity), the adversary outputs
a challenge, which varies from game to game, and challenger responds based on a coin flip
b. In the proofs in this section, it will be convenient to refer to each of these as an oracle
query the adversary can make, so we define the following additional oracle queries which
correspond to the challenge stage of each game:

Ch RecvAnon. On input (i∗0, i
∗
1), select b

R←− {0, 1} and respond with
nym∗ ← GenNym(params, credi∗b).

Ch SignerAnon. On input (j∗0 , j
∗
1 , nym

∗), select b
R←− {0, 1} and respond with

vt∗ ← Vote(params, credj∗b , nym
∗).

Ch VoterAnon. On input (i∗0, i
∗
1, V

∗
0 , V

∗
1 ,msg), select b

R←− {0, 1} and respond with
Σ∗b ← SignRep(params, credi∗b , V

∗
b ,msg).

We now go to prove the first lemma we will need.

B.4.1 Traceability

Intuitively, traceability means that all nyms, votes and signatures of reputation must be
traceable to registered recipients and voters.

In the following, we refer to an additional opening algorithm OpenSigRep which works
exactly like OpenNym and OpenVote. That is, it uses the extractor key xk to obtain the
rcvkey of the signer from the commitment in the NIZK within the signature.

Lemma B.4.2. No polynomial-time adversary has more than negligible advantage in the
following game.

Setup: The challenger runs the Setup algorithm, registers n users, and returns params and
all users’ credentials to the adversary.

Forge: The adversary wins the game if one of the following occurs:

• The adversary outputs a valid nym∗ and OpenNym(params, openkey, nym∗) = ⊥.

• The adversary outputs a valid vote vt∗ and OpenVote(params, openkey, vt∗) = ⊥.

• The adversary outputs a valid signature of reputation Σ∗ and OpenSigRep(params,
openkey,Σ∗) = ⊥.

In the above, “valid” means that the nym∗, vt∗ or Σ∗ passes the corresponding verification
algorithm.

We also refer to the above as nym traceability, vote traceability, signature of reputation
traceability respectively.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 96

Proof. We prove the case for signature of reputation traceability. The other cases are similar
if not easier. There are 2 possible cases if OpenSigRep(params, openkey,Σ∗) = ⊥:

• Case 1: The OpenSigRep algorithm uses the extractor key xk of the GS proof system
to extract the signer’s pub cred = (rcvkey, vpk, vkbb, upkike), and a certificate on the
above tuple. The pub cred extracted is not among the registered users.

• Case 2: Use xk to extract a list of votes, and now further use OpenVote on these
votes to extract a set S of c distinct voters, more specifically, for each j ∈ S, extract
pub credj = (rcvkeyj, vpkj, vkbbj, upkikej) and a certificate for each pub credj. There
exists a j ∈ S such that pub credj is not among the registered users.

If either of the above cases is true, we can build a simulator that breaks the security of
the certification scheme, or more specifically, the existential unforgeability under the weak
chosen message attack (henceforth referred to as weak EF-CMA security).

At the beginning of the game, the simulator picks pub credi = (rcvkeyi, vpki, vkbb,i, upkike,i)
for all 1 ≤ i ≤ n, and the corresponding secret keys vski, skbb,i, uskike,i. The simulator submits
all pub credi (1 ≤ i ≤ n) to the weak EF-CMA challenger C. The EF-CMA challenger now
returns to the simulator the public verification key vkcert of the certification scheme, as well
as n certificates on the submitted messages. With this, the simulator has chosen the vkcert
for our reputation system, as well as the user credentials for n users. The simulator picks
the other required system parameters directly.

The simulator now releases all users’ secret credentials to a traceability adversary, which
outputs a forgery consisting of a signature of reputation Σ∗. No matter which of the above
case is true, the simulator is able to extract a pub cred that does not match any registered
user, and a certificate for pub cred. In this way, the simulator has forged a certificate on a
new message, thereby breaking the weak EF-CMA security of the certification scheme.

B.4.2 Non-frameability

Lemma B.4.3. No polynomial-time adversary has more than negligible advantage in the
following game.

Setup: The challenger runs the Setup algorithm, registers n users, and returns params to
the adversary.

Query : The adversary adaptively makes Corrupt, Nym, Vote and SignRep queries to
the challenger. The adversary can also make any of the challenge queries, including
Ch RecvAnon, Ch SignerAnon, Ch VoterAnon queries.

Forge: The adversary wins the game if it succeeds in one of the following forgeries:

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 97

• Nym forgery. The adversary outputs a forged nym∗. nym∗ has not been re-
turned to the adversary by a previous Nym (or Ch RecvAnon) query. In addition,
OpenNym(params, openkey, nym∗) = i∗, and i∗ is not among those corrupted by
the adversary through a Corrupt query.

• Vote forgery. The adversary outputs a forged vote vt∗. vt∗ has not been returned
to the adversary by a previous Vote (or Ch VoterAnon) query, and vt∗ opens to
a voter j∗ who has not been compromised by the adversary through a Corrupt
query.

• Signature of reputation forgery. The adversary outputs a forged signature of rep-
utation Σ∗. Σ∗ has not been returned to the adversary by a previous SignRep (or
Ch SignerAnon) query, and Σ∗ opens to a signer i∗ who has not been compromised
by the adversary through a Corrupt query.

Proof. We prove the case for nym non-frameability. The proofs for vote non-frameability
and signature of reputation non-frameability are similar.

First, notice that the (skots
∗, vkots

∗) used in nym∗ must agree one of those previously seen
by the adversary in a Nym, Vote or SignRep query on the same user i∗. Otherwise, we
can build a simulator that breaks the security of the BB-signature scheme, specifically, the
existential unforgeability under the weak chosen message attack (henceforth referred to as
weak EF-CMA security.) Groth used a similar argument in his group signature scheme [48].
Below we describe this reduction in detail.

The simulator guesses i∗ at the beginning of the game. If the guess turns out to be wrong
later in the game, the simulator aborts. The simulator guesses correctly with probability at
least 1/n, where n denotes the total number of registered users.

The simulator obtains a verification key V = gs ∈ G from the BB signature challenger.
The simulator picks user i∗’s verification key vkbb,i∗ to be V . Notice that the simulator does
not know the corresponding signing key vkbb,i∗ = s. The simulator picks the other elements
of user i∗’s credential directly, and signs a certificate for it. The simulator need not know
vkbb,i∗ = s to produce the certificate, as the certificate signs vkbb,i∗ = V rather than the
secret signing key s.

The simulator chooses q random (skots,1, vkots,1), . . . , (skots,q, vkots,q) pairs, and queries the
BB signature challenger for signatures on H(vkots,1), . . . , H(vkots,q). Whenever the adversary
makes a Nym, Vote, or SignRep query, the simulator consumes one of these (skots,i, vkots,i)
where 1 ≤ i ≤ q.

When the adversary outputs a forged nym∗ with a vkots
∗ never seen before, the simulator

uses, the extractor key to open the NIZK, and obtains a new pair (H(vkots
∗),BBSig.Sign(H(vkots

∗))).
Due to the collision resistance of the hash function, H(vkots

∗) /∈ {H(vkots,1), . . . , H(vkots,q)}
(except with negligible probability). This breaks the weak EF-CMA security of the BB
signature scheme.

As the vkots
∗ used in nym∗ agrees with one seen before (in a Nym, Vote, or SignRep query

from i∗), nym∗ must agree with a previously seen nym∗ from user i∗. (nym∗ cannot agree with

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 98

a previously seen vote or signature of reputation from i∗.) Otherwise, the nym∗ would contain
a one-time signature signed with skots

∗ on a new message, where the message contains all of
nym∗ except the one-time signature part. This breaks the security of the one-time signature
scheme through a simple reduction.

B.4.3 Unforgeability

Lemma B.4.4. No polynomial-time adversary has more than negligible advantage in the
following game.

Setup. The challenger sets up system parameters, registers n users, and returns params to
the adversary.

Query. The adversary adaptively makes Corrupt, Nym, Vote, SignRep queries.

Forge. The adversary wins the game if it succeeds in either of the following types of forgeries:

• Vote forgery. The adversary outputs a vote vt∗ such that OpenVote(params,
openkey, vt∗) = (j, i), where j has not been corrupted through a Corrupt query,
and the adversary has not previously submitted a Vote query from user j to any
nym that opens to i.

• Signature of reputation forgery. The adversary outputs a signature of reputation
Σ∗. Suppose OpenSigRep opens Σ∗ to the recipient i and c voters j1, . . . , jc.
There exists j ∈ {j1, . . . , jc} such that j has not been corrupted through a Corrupt
query, and the adversary has not previously submitted a Vote query from user j
to a nym which opens to i.

Proof. By reduction to vote unforgeability of the unblinded scheme. We will perform the
simulation under a simulated crs. This means that we can no longer rely on the extractor
key xk to open the NIZK. However, notice that we can also implement the open algorithms
by decrypting the ciphertexts in the nyms, votes, and signatures of reputation. Notice that
under a real crs, opening using xk or through decryption yield the same result due to the
perfect soundness of NIZK.

Setup: The simulator chooses a simulated crs instead of a real crs, and it knows the simu-
lation secret simkey. The simulator obtains all users’ rcvkey and vpk from C, the vote
unforgeability challenger of the unblinded scheme. The simulator sets up the parame-
ters of CCAEnc such that it knows the decryption key. The simulator picks all other
system parameters directly. Notice that the simulator knows the uskike for all users.

Corrupt : The adversary specifies a user i to corrupt. The simulator forwards the query to
C, and obtains the user’s vsk in return. The simulator returns the credential of user i
to the adversary.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 99

Nym, SignRep: It is not hard to see that the simulator can answer Nym and SignRep
queries normally.

Vote: As the simulator has all users’ uskike, it is able to decrypt the ciphertext in the
specified nym, and identify the recipient i. See Appendix B.4.4 for more details on how
this step can be achieved.

Now the simulator forwards the voter j and the recipient i to C, and obtains an un-
blinded vote from j to i. To compute the vote, the simulator encrypts the unblinded
vote under IKEnc to obtain the term C1. Then it computes C2 normally. It uses
the simulation secret simkey to compute the NIZK, and eventually, uses the one-time
signature scheme to sign everything. It is not hard to see that a vote computed in this
way is identically distributed as a real vote under a simulated crs.

Forge: Eventually, the adversary outputs a forgery. If the forgery is a vote vt∗, the simulator
decrypts the IKEnc ciphertext in vt∗ to obtain an unblinded vote U∗. Otherwise, if the
forgery is a signature of reputation Σ∗, the simulator decrypts the CCAEnc ciphertext
in Σ∗ to obtain a list of unblinded votes, among which is U∗. If the adversary wins the
vote unforgeability game, then U∗ is from an uncorrupted voter j to a recipient i, and
the adversary has never made a Vote query from j to a nym corresponding to i. This
means that our simulator has broken the vote unforgeability of the unblinded scheme.

B.4.4 Alternative implementation of OpenNym

In all of the games, when the adversary makes a SignRep query (or a Ch SignerAnon query),
the challenger needs to check if the set of votes supplied by the adversary correspond to the
recipient specified by the adversary. To do this, the challenger calls the OpenNym algorithm
to trace the owners of the nyms that are included in the votes.

We now propose an alternative implementation of the OpenNym oracle.
First, we define a sub-routine called TestNym to test if a nym belongs to a specific user.

TestNym(params, nym, credi). The TestNym subroutine checks if a nym is owned by
user i. Parse nym as nym = (vkots, C,Π, σots), where C = (C0, C1, C

′
1) consists of an

encryption of user i’s receiver key rcvkeyi (denoted C0) and two random encryptions
of 1 ∈ G (denoted C1 and C ′1). Let uskike,i denote the secret decryption key of user i.

The TestNym algorithm first tests if the following equations are true:

IKEnc.Dec(paramsike, uskike,i, C) = rcvkeyi

IKEnc.Dec(paramsike, uskike,i, C1) = 1

IKEnc.Dec(paramsike, uskike,i, C
′
1) = 1

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 100

Next, The TestNym algorithm checks that the two encryptions of 1 are uncorrelated
in the following sense. Let C1 = (c1, c2, c3), and let C ′1 = (c′1, c

′
2, c
′
3). The algorithm

makes sure that
e(c2, c

′
3) 6= e(c′2, c3) . (B.1)

If both of the above checks pass, the algorithm concludes that the nym’s owner is user
i.

Lemma B.4.5. If nym is generated by user i, then TestNym(params, nym, credi) returns
1 (except negligible probability). In addition, there exists at most one i ∈ {1..n} such that
TestNym(nym, credi) = 1.

Proof. The first direction is obvious: if nym is generated by user i, clearly, TestNym(params,
nym, credi) returns 1 (except negligible probability).

For the other direction, assume for the sake of contradiction that there exist 2 users
i 6= j ∈ {1..n} such that TestNym(nym, credi) = 1, and TestNym(nym, credj) = 1. This
means that there exist upkike,i = (Ai, Bi) 6= upkike,j = (Aj, Bj), and r1, s1, r2, s2 ∈ Zp, and

Eupkike,i(1, r1, s1) = Eupkike,j(1, r2, s2)

Eupkike,i(1, r
′
1, s
′
1) = Eupkike,j(1, r

′
2, s
′
2)

Clearly, for the latter two terms in the ciphertext to be equal, r1 = r2 = r, and s1 = s2 = s.
Similarly, r′1 = r′2 = r′, and s′1 = s′2 = s′. For the first term in the ciphertext to be equal, we
obtain through basic algebra:

AriB
s
i = ArjB

s
j ⇒ (Ai/Aj)

r = (Bj/Bi)
s

Similarly,
(Ai/Aj)

r′ = (Bj/Bi)
s′

But this would break the second check in the TestNym algorithm (see Equation (B.1)).

We now describe an alternative implementation of the OpenNym algorithm which the
simulator will use in the simulations. Let Sc denote the set of users that have been corrupted
by the adversary thus far. Let L = {nymk, idk}1≤k≤q denote the list of nyms that have been
returned to the adversary through a Nym query (or a Ch RecvAnon query). nymk is the
nym returned to the adversary, and idk denotes the id of the user specified in the query. (In
the case of a Ch RecvAnon, idk should be the one of the two users specified in the query,
depending on the challenger’s coin.)

OpenNym :

Step 1: for i ∈ Sc : if TestNym(nym, credi) = 1 then return i;

Step 2: if nym ∈ L : return the corresponding id

Step 3: return ⊥

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 101

Remark 2. This means that the adversary essentially has enough information to perform
OpenNym itself, on any valid nym it is able to construct.

Lemma B.4.6. This alternative OpenNym procedure is correct in the real crs world, except
with negligible probability.

Proof. Due to nym traceability and unforgeability, except with negligible probability, either
1) the nym agrees with one previously seen by the adversary; or 2) the nym opens to a user
within the adversary’s coalition (where the open operation is performed using the extractor
key.) Due to the perfect soundness of NIZK, for the second case, using the extractor key or
TestNym to open the nym would produce the same result.

Notice that the above alternative OpenNym implementation works in all games, even
though each game may have a different type of challenge query.

B.4.5 Signer Anonymity

We perform the simulation in the simulated crs world. This shouldn’t affect the adversary’s
advantage by more than negligible amount. Under a simulated crs, the NIZK has perfect
zero-knowledge. Therefore, the only terms in the signature of reputation that can possibly
reveal the signer is the encryption of the unblinded vote CCAEnc.Enc(U1, . . . , Uc), and
rep = ShowRep(U1, . . . , Uc).

In the challenge stage, the adversary submits two signers i0 and i1, and a list of votes
for each signer. Let ~U0 = (U0,1, . . . , U0,c), ~U1 = (U1,1, . . . , U1,c) denote the set of distinct un-
blinded votes for i0 and i1 respectively. These unblinded votes may be obtained by decrypting
the ciphertexts in the votes.

Now consider the following hybrid sequence:

Game 0 : In Game 0, the challenger chooses user i0 to answer the challenge query. That is,

Σ∗ =
(
. . . E0 = CCAEnc.Enc(~U0), rep0 = ShowRep(~U0), . . .

)
Game M : In Game M, the challenger encrypts the unblinded votes from i0, but uses the

unblinded votes from i1 in the ShowRep algorithm. In addition, it uses the simulation
secret simkey to construct the NIZK.

Σ∗ =
(
. . . E0 = CCAEnc.Enc(~U0), rep1 = ShowRep(~U1), . . .

)
Game 1 : In Game 1, the challenger chooses user i1 to answer the challenge query. That is,

Σ∗ =
(
. . . E1 = CCAEnc.Enc(~U1), rep1 = ShowRep(~U1), . . .

)

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 102

Game M and Game 1 are indistinguishable. We can prove this through a reduction
to the security of the encryption scheme. We only require CPA security in this case. We
now show that given an adversary that can distinguish Game M and Game 1, we can build
a simulator that breaks the CPA security of the encryption scheme. The simulator obtains
the public key of the CCAEnc scheme from an encryption challenger C. The simulator sets
up the parameters of our reputation system, such that the CCAEnc used in our reputation
system agrees with those received from C. The simulator picks all other parameters directly
(under a simulated crs), and proceeds with the signer anonymity game as prescribed, except
for the Ch SignerAnon query. In the Ch SignerAnon query, the simulator decrypts the
IKEnc ciphertext in the submitted votes, and obtains two sets of unblinded votes: ~U0 =
(U0,1, . . . , U0,c) and ~U1 = (U1,1, . . . , U1,c). The simulator submits the two sets of unblinded

votes to the encryption challenger, and obtains Eb = CCAEnc.Enc(~Ub). The simulator
builds Eb and rep1 into the challenge signature of reputation Σ∗, and uses the simulation
secret to simulate the NIZK proofs. If the adversary can distinguish whether it is in Game
M or Game 1, then the simulator would succeed in distinguishing which set of unblinded
votes C encrypted. Notice that in the above, we modified the standard IND-CPA security
game such that the simulator submits two sets of plaintexts (as opposed to two plaintexts)
to the challenger C. This can be derived from the standard IND-CPA security through a
simple hybrid argument.

Game 0 and Game M are indistinguishable. By reduction to the reputation anonymity
of the unblinded scheme.

The simulator obtains all users’ (rcvkey, votekey) from C, the challenger of the unblinded
scheme. The simulator builds these into the user credentials of the full reputation system.
The simulator picks all other parameters needed directly (under a simulated crs), and pro-
ceeds to interact with the adversary prescribed, except in the Ch SignerAnon query.

When answering the Ch SignerAnon query, the simulator first checks if all the votes
correspond to the same receiver specified by the adversary. This can be done through the
OpenNym algorithm defined in Appendix B.4.4, as the simulator knows all users’ secret
credentials. The simulator now decrypts the IKEnc ciphertext in the votes to obtain two
sets of unblinded votes, ~U0 = (U0,1, . . . , U0,c) and ~U1 = (U1,1, . . . , U1,c).

Had we used a real crs, these unblinded votes must be traceable to a registered voter and
recipient (except with negligible probability), due to the traceability of votes and the perfect
soundness of NIZK proofs. Under a simulated crs, the unblinded votes must be traceable
to a registered voter and recipient as well, since otherwise, we may build a simulator that
distinguishes a simulated crs and a real crs. As the simulator knows all users’ rcvkey and
votekey, the simulator can identify the voters from these unblinded votes through a brute
force enumeration method:

If U = VoteUnblinded(rcvkeyi, votekeyj), then U is an unblinded vote from j to i

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 103

As a result, the simulator obtains two sets of voters ~j0 = (j0,1, . . . , j0,c), and ~j1 =
(j1,1, . . . , j1,c). The simulator now submits the two lists of voters to C, and in return, obtains

repb = ShowRep(~Ub). It builds E0 and repb into the challenge signature of reputation Σ∗,
and uses the simulation secret simkey to simulate the NIZK proofs. Clearly, if b = 0, then
the above game is identical to Game 0; otherwise, it is identical to Game M.

B.4.6 Voter Anonymity

In the voter anonymity game, the adversary submits two voters j∗0 and j∗1 and a nym∗ in the
challenge stage, and obtains a vote from one of these voters j∗b on the specified nym∗. nym∗

must open to an uncorrupted user i∗. There are two places in the simulation that can leak
information about the challenger’s coin b. The first place is obviously the challenge vote.
The second place is more obscure: if the adversary submits the challenge vote vt∗ (or some
correlated version of it) in a SignRep query, it learns a signature of reputation that encodes
information about j∗b . We start by proving that the adversary is not able to learn anything
from the SignRep queries. To this end, we define the following hybrid game:

Game I. We modify the original voter anonymity game in the following way. Whenever
the adversary makes a SignRep query, the challenger decrypts the IKEnc ciphertext in the
votes and obtains a list of unblinded votes. Let c denote the number of distinct unblinded
votes. The challenger now picks a random recipient, and random c voters. It computes a
signature of reputation corresponding to the above recipient and voters. We henceforth refer
to a signature of reputation constructed in this way as a random signature of reputation.
Notice that in Game I, the SignRep queries contain no information about which voter was
chosen in the Ch VoterAnon query.

Lemma B.4.7. Answering SignRep queries with random signatures of reputation does not
affect the adversary’s advantage in the voter anonymity game by more than a negligible
amount.

Proof. By reduction to signer anonymity. Let q denote the total number of SignRep queries
where vt∗ is involved. Consider the following hybrid sequence. In the d-th game (0 ≤
d ≤ q), the challenger truthfully answers the first k SignRep queries where vt∗ is involved.
For the remaining SignRep queries, the simulator returns random signatures of reputation.
Due to the hybrid argument, it suffices to show that the (d − 1)-th and d-th games are
computationally indistinguishable, where 1 ≤ d ≤ q.

Setup: The simulator obtains params and all users’ credentials from the signer anonymity
challenger C.

Corrupt, Nym, Vote: Compute a result to these queries normally.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 104

Ch VoteAnon: Flip a random coin b and compute a vote from j∗b normally.

SignRep: For the first d − 1 SignRep queries, answer faithfully. For the d-th query, let
S = (vt1, . . . , vtk) denote the list of votes specified by the adversary. The simulator
first checks if all votes submitted correspond to the same recipient specified by the
adversary by calling the OpenNym procedure defined in Section B.4.4.

As the simulator knows all users credentials, it can decrypt the IKEnc ciphertext in
the votes and obtain a list of unblinded votes. Let c denote the number of distinct
unblinded votes.

Now the simulator picks a random recipient i′ and c distinct voters j′1, . . . , j
′
c. It

constructs c votes from j′1, . . . , j
′
c to i′ respectively. Denote this set of votes as S ′.

The simulator now submits the message msg, and two sets of votes S and S ′ to the
signer anonymity challenger C. In return, the simulator obtains a signature of reputa-
tion Σ, which the simulator passes along in response to the adversary’s query.

Notice that if C returned a Σ corresponding to S, then the above simulation is identical
to Game d. Otherwise, it is identical to Game d − 1. Therefore, the adversary’s advantage
should differ only by a negligible amount in these two adjacent games.

Remark 3. In the above, the challenger computes a random signature of reputation by
selecting c random voters j1, . . . , jc and a random recipient i, computing c votes from these
voters to i, and then directly calling the SignRep algorithm to construct the signature of
reputation.

Under a simulated crs, the challenger can use the following alternative strategy: It com-
putes c unblinded votes U1, . . . , Uc from j1, . . . , jc to i respectively. Then, it calls CCAEnc.Enc
to encrypt these unblinded votes, and calls ShowRep(U1, . . . , Uc) to construct rep. Finally,
the challenger uses simkey to simulate the NIZK, and calls the one-time signature scheme to
sign everything.

Under a simulated crs, the signature of reputation computed in the above two ways are
identically distributed.

Game II. Notice that in Game I, the challenger decrypts the IKEnc ciphertext in the
votes to uncover the unblinded votes. In Game II, the challenger picks the parameters of
the system such that it knows the decryption key to the CCAEnc scheme. Instead of
decrypting the IKEnc ciphertext, the challenger decrypts the CCAEnc ciphertext instead,
and counts the number distinct voters c. Then it returns to the adversary a random signature
of reputation consisting of exactly c votes.

Game II is identically distributed as Game I under a real crs, due to the perfect soundness
of the NIZK proofs and the traceability of the votes.

Later, under the simulated crs, the simulator sticks to decrypting the CCAEnc cipher-
text for opening the votes.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 105

We now show that the challenge vote vt∗ does not reveal sufficient information for the
adversary to distinguish whether vt∗ comes from j∗0 or j∗1 . To demonstrate this, we will
perform simulations under a simulated crs.

GameSim. The challenger now plays the above-defined Game II with the adversary under
a simulated crs. This does not affect the adversary’s advantage by more than a negligible
amount.

We now show that the adversary’s advantage in GameSim is negligible. There are two
ciphertexts in the challenge vote vt∗, the IKEnc ciphertext C1, and the CCAEnc ciphertext
C2. These two ciphertexts are the only places that may leak information about which voter
is chosen for the challenge query.

We define the following hybrid sequence.

Game 0 : The challenger chooses j∗0 for the challenge query.

Game M : When answering the challenge query, the challenger uses votekeyj∗1 to compute
C1 (through a homomorphic transformation as prescribed by the Vote algorithm).
However, it calls CCAEnc.Enc to encrypt xj∗0 , and produces C2. The challenger
now uses the simulation secret simkey to simulate the NIZK. Eventually, the challenger
uses the one-time signature scheme to sign everything and returns the result to the
adversary.

Game 1 : The challenger chooses j∗1 for the challenge query.

Game M is indistinguishable from Game 1. By reduction to the security of the
selective-tag CCA encryption scheme.

Setup: Simulator learns the public key of the CCAEnc scheme from a challenger C of
the encryption scheme. The simulator selects skots

∗, vkots
∗, computes the selected tag

tag∗ = H(vkots
∗), and commits tag∗ to the challenger C. The simulator sets up all other

parameters as normal, and registers n users.

Corrupt, Nym, Vote: As the simulator knows all users’ secret credentials, it can compute
answers to these queries normally.

Ch VoterAnon: The simulator obtains two voters j∗0 , j∗1 and a nym from the adversary.
The simulator forward xj∗0 and xj∗1 to the encryption challenger C, and gets back C∗ =
CCAEnc.Enc(pkcca, xj∗b , tag

∗). It builds the ciphertext C∗ into the challenge vote.
Now the simulator uses votekeyj∗1 to compute the IKEnc ciphertext C1, and uses
simkey to simulate the NIZK proofs. Finally, it calls the one-time signature scheme to
sign everything, and returns the resulting vote to the adversary.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 106

SignRep: The query includes a list of votes. Check if all votes correspond to the same
recipient specified by the adversary by calling the OpenNym procedure as defined in
Appendix B.4.4.

Now the simulator needs to count the number of distinct voters. If the vote is the same
as the challenge vote, consider that vote to be from either of the challenge voters. This
will not affect the total count of distinct voters, due to the requirements of the voter
anonymity game.

If the vote is not equal to the challenge vote, the simulator calls the decryption oracle
of the CCAEnc scheme. The tag (under which the decryption oracle is called) must
be different from the selected tag tag∗. We show this below in Lemma B.4.8.

The decryption oracle returns a set of xj values that identify the set of voters. The
simulator counts the number of distinct voters c, and constructs a random signature
of reputation consisting of c distinct voters.

Clearly, if C returned CCAEnc.Enc(pkcca, xj∗0 , tag
∗), the above simulation is identically

distributed as Game M. Otherwise, it is identically distributed as Game 1.

Lemma B.4.8. In the above simulation, whenever the simulator queries the decryption
oracle of the CCAEnc, the tag of the encryption differs from tag∗ except with negligible
probability.

Proof. Due to the security of the one-time signature scheme, the vote (which is not equal to
vt∗) must be signed under a key skots

′ = skots
∗. Let vkots

′ denote the corresponding verification
key. Then the tag used in the CCAEnc scheme tag′ = H(vkots

′) must be different from tag∗

due to the collision resistance of the hash function. A more detailed proof of this can be
found in Groth’s group signature paper [48].

Game 0 is indistinguishable from Game M. We now show that if there exists an
adversary that can distinguish Game 0 from Game M, we can build a simulator that breaks
either the IND-CPA of the IKEnc scheme, or the vote anonymity of the unblinded scheme.

Recall that in the security definition of voter anonymity, the adversary can win the voter
anonymity game in two cases depending on whether the recipient is corrupted or not.

Below, we build a simulator which guesses ahead of the game whether the challenge query
will correspond to an uncorrupted recipient or a corrupted recipient. Depending on the guess,
the simulator will use different strategies for the simulation. If later the simulator’s guess
turns out to be wrong, the simulator simply aborts. The simulator has probability at least
a half of guessing right.

We now describe the simulator’s strategy for each of the two cases.

Case 1 : Uncorrupted recipient.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 107

We build a reduction to the IND-CPA security of the IKEnc scheme. The simulator
guesses upfront which recipient will be submitted in the Ch VoterAnon query. Denote
this challenge recipient as i∗. The simulator will abort if the guess later turns out to
be wrong.

Setup: From an encryption challenger C, the simulator obtains the public parameters
paramsike, and a user public key upkike

∗ which it tries to attack. The simulator
lets this upkike

∗ to be user i∗’s user public key. For all other users, the simulator
picks their upkike and uskike by directly calling the IKEnc.GenKey algorithm.

The simulator chooses parameters of the CCAEnc scheme such that it knows
the decryption key. The simulator generates the remaining parameters directly.

Nym, Vote: The simulator can answer these queries directly.

Corrupt : If the adversary corrupts the i∗-th user, abort. Otherwise, return the secret
credential for the specified user to the adversary.

SignRep: The simulator first checks if all votes correspond to the same recipient speci-
fied by the adversary, by using the OpenNym procedure defined in Section B.4.4.
Next, the simulator calls the decryption algorithm of the CCAEnc scheme, to de-
crypt the CCAEnc ciphertext in the submitted votes. The simulator counts the
number of distinct unblinded votes, and builds a random signature of reputation
consisting of the same number of voters.

Ch VoterAnon: The simulator gets two voters j∗0 and j∗1 , and a nym. If the nym does
not open to i∗, abort. (OpenNym is implemented using the procedure described
in Section B.4.4). The simulator now computes the unblinded votes Uj∗0 ,i and
Uj∗1 ,i and submits them to the encryption challenger C. The simulator gets back a
ciphertext IKEnc.Enc(paramsike, upkike

∗, Uj∗b ,i), this will be the C1 ciphertext in
the resulting vote. The simulator now computes the CCAEnc ciphertext directly
on xj∗0 , and simulates the NIZK proofs. Eventually, the simulator calls the one-
time signature scheme to sign everything, and returns the resulting vote to the
adversary.

It is not hard to see that if C encrypted Uj∗0 ,i, then the above game would be identically
distributed as Game 0. Otherwise, it is identically distributed as Game 1.

Case 2 : Corrupted recipient.

By reduction to voter anonymity of the unblinded scheme.

Setup. The simulator obtains all users’ rcvkey and vpk from the vote anonymity
challenger C of the unblinded scheme. The simulator now guesses the challenge
voters j∗0 and j∗1 that the adversary will specify in the Ch VoterAnon query, as well
as the challenge recipient i∗. If the simulator’s guesses later turn out to be wrong,

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 108

the simulation simply aborts. Now, through Corrupt queries to C, the simulator
corrupts all users’ vsk except for j∗0 and j∗1 . The simulator makes VoteUnblinded
queries to C, and obtains an unblinded vote from j∗0 and j∗1 to all users except i∗.
The simulator picks the parameters of the CCAEnc such that it knows its secret
decryption key. The remaining system parameters are picked directly.

Corrupt. If the adversary queries j∗0 or j∗1 , abort the simulation. Otherwise, return
the specified user’s credential to the adversary.

Nym. Compute directly.

Vote. The adversary submits a voter j and a nym which opens to i. The simulator
can decide i by calling the alternative OpenNym algorithm (see Section B.4.4).
If j ∈ {j∗0 , j∗1} and i = i∗, abort the simulation. Otherwise, the simulator has
queried C, and obtained an unblinded vote U from j to i. The simulator computes
an IKEnc encryption of the unblinded vote U , by directly encrypting it. The
simulator computes the CCAEnc ciphertext on xj directly. The simulator uses
simkey to simulate the NIZK proofs.

Ch VoterAnon. The simulator calls the alternative OpenNym algorithm (see Sec-
tion B.4.4) to decide the recipient i. The simulator now forwards the two spec-
ified voters j∗0 and j∗1 and the recipient i to C, to obtain an unblinded vote U∗b
corresponding to one of the voters j∗b . The simulator now encrypts the U∗b by di-
rectly calling the IKEnc.Enc algorithm. The simulator computes the CCAEnc
ciphertext on xj∗0 directly, and uses simkey to simulate the NIZK.

SignRep. The simulator calls the alternative OpenNym algorithm (see Section B.4.4)
to check that all specified votes open to the specified recipient i. Now the simulator
calls the decryption algorithm of the CCAEnc and obtains a set of voters. The
simulator counts the number of distinct voters c, and computes a random signature
of reputation with c voters. As we mentioned in Remark 3, the simulator only
needs to know c unblinded votes for a random recipient i, to compute a random
signature of reputation containing c voters.

B.4.7 Receiver Anonymity

By reduction to the IK-CPA security of the IKEnc scheme.
We perform the simulation under a simulated crs. This does not affect the adversary’s

advantage by more than a negligible amount.

Setup. The simulator guesses which two users i∗0 and i∗1 the adversary will submit in the
Ch RecvAnon query. The simulator obtains two user public keys upkike

∗
,0 and upkike

∗
,1

from the IK-CPA challenger C. It lets i∗0’s user public key to be upkike
∗
,0, and i∗1’s user

public key to be upkike
∗
,1. The simulator calls IKEnc.GenKey to generate the (upkike,

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 109

uskike) pairs for all other users. As a result, the simulator knows all users’ uskike except
for i∗0 and i∗1.

The simulator picks the parameters of the CCAEnc.Enc encryption scheme, such
that it knows the secret decryption key. The simulator picks the remaining system
parameters directly.

Corrupt. If the query is on i∗0 or i∗1, abort. Otherwise, return the user’s credential to the
adversary.

Nym, Vote. Compute directly.

SignRep. In case any of the nyms specified is equal the challenge nym, abort.

Otherwise, the simulator calls the OpenNym procedure defined in Section B.4.4 to
determine the recipient and check that all of the nyms correspond to the same recipient
i as specified by the adversary.

The simulator decrypts the CCAEnc ciphertext in each vote and obtains a set of voters
j1, . . . , jc. With knowledge of all users votekey and rcvkey, the simulator can compute
the unblinded votes from j1, . . . , jc to i. Now it computes the CCAEnc ciphertext
and the rep parts of the signature based on the unblinded votes. The simulator uses
the simkey to simulate the NIZK proofs.

Ch RecvAnon. The adversary specifies two users, i∗0 and i∗1. If i∗0 and i∗1 disagree with the
simulator’s guesses, abort. The simulator specifies (rcvkeyi∗0 , 1, 1) and (rcvkeyi∗1 , 1, 1) to
C and obtains a challenge ciphertext
C = IKEnc.Enc(paramsike, upkike,i∗b , (rcvkeyi∗b , 1, 1)). Recall that the two encryptions
of 1 are needed to rerandomize the ciphertext later when a voter performs homomorphic
transformation on the ciphertext. (Due to the hybrid argument, the IK-CPA game may
be modified such that the encryption adversary submits longer messages consisting of
multiple elements in G in the challenge phase.) The simulator builds the challenge
ciphertext C into the nym, and simulates the NIZK proofs. Finally, it calls the one-time
signature scheme to sign everything, and returns the resulting nym to the adversary.

Guess. The adversary outputs a guess b′. The simulator outputs the same guess.

It is not hard to see that if the adversary succeeds in guess b′ with more than negligible
advantage, the simulator would have more than negligible advantage in the IK-CPA game.

B.4.8 Reputation Soundness

The adversary plays the reputation soundness game, and outputs a forged signature of
reputation Σ∗ at the end of the game. Suppose Σ∗ signs the message msg∗ and the reputation
count c∗.

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 110

If the adversary wins the game, it is a requirement that the adversary has made a SignRep
query on the message msg∗ and reputation count c∗. Therefore, Σ∗ cannot be equal to any
signature of reputation returned by a SignRep query. Due to the traceability and non-
frameability of signature of reputation, Σ∗ must open to a signer i∗ within the adversary’s
coalition, that is, a signer that has been corrupted through a Corrupt query.

Now apply OpenSigRep to open Σ∗ to a set of c∗ distinct voters. This fails with
negligible probability due to the traceability of the signature of reputation. As c∗ > `1 + `2,
there must exist an uncorrupted voter j who voted for i∗, and the adversary has not made
a Vote query from j to any nym that opens to i∗. But this breaks the unforgeability of
signature of reputation.

B.5 Proofs for the Space Efficient Scheme

Theorem B.5.1. The algorithms Setup, GenCred, GenNym, Vote, SignRep′, and
VerifyRep′ constitute an ε-sound scheme for signatures of reputation.

Proof. We prove this in the random oracle model through a reduction from the soundness
of the regular scheme, which was proven in the previous section. Assume we have some
adversary A trying to break the ε-soundness game. A will only be able to compute hash
values by querying the random oracle H. As A runs, H records the queries A makes in a
table and returns responses selected uniformly at random (except for repeated queries, in
which case the previous value is returned).

Eventually A outputs a message msg and a forged signature of reputation Σ. Let c =
VerifyRep′(params,msg,Σ). Assume that c 6= ⊥, (1 − ε)c > `1 + `2, and the hashes and
challenge set computation in Σ verify correctly. We will bound the probability that the all
the votes in the challenge set verify.

The challenger looks through the hash values included and is able to find all their preim-
ages based on the queries recorded by H. From these the challenger reconstructs the full
hash tree and all c original leaf values ω1, . . . , ωc. For each 1 ≤ i ≤ c, the challenger verifies
θi and ζi and checks that Rρi < Rρi+1

. Let c′ ≤ c be the number of these votes which pass
both checks.

We distinguish two cases:

1. c′ ≥ (1− ε)c
2. c′ < (1− ε)c

Case 1 must occur with probability less than or equal to some negligible function ν(λ),
otherwise the challenger could output the c′ > `1 + `2 valid votes and then it would be an
adversary which would break the regular reputation soundness property.

We now bound the probability of all the challenge votes verifying in Case 2. Since the
challenge indices were selected by evaluating H on unique inputs, I is a uniformly random

APPENDIX B. PROOFS FOR THE SIGNATURE OF REPUTATION SCHEME 111

set of ` votes. So the probability that these are all among the c′ valid votes is

c′

c
· c
′ − 1

c− 1
· c
′ − 2

c− 2
· · · c

′ − (`− 1)

c− (`− 1)
=

`−1∏
i=0

c′ − i
c− i

.

Since c′ < (1− ε)c, this probability strictly less than

`−1∏
i=0

(1− ε)c− i
c− i

.

We now show that the above value is at most e−λ.
Since ` was selected as dλ

ε
e, we may reason as follows.

` =
⌈λ
ε

⌉
≥
⌈ λ

− log(1− ε)

⌉
(using the identity log(1 + x) ≤ x for x > −1)

=⇒ ` ≥ λ

− log(1− ε)

=⇒ −λ ≥ ` log(1− ε) =
`−1∑
i=0

log(1− ε) =
`−1∑
i=0

log
(1− ε)c

c

≥
`−1∑
i=0

log
(1− ε)c− i

c− i
= log

`−1∏
i=0

(1− ε)c− i
c− i

=⇒ log
`−1∏
i=0

(1− ε)c− i
c− i

≤ log e−λ

=⇒
`−1∏
i=0

(1− ε)c− i
c− i

≤ e−λ

So the probability of all the challenge votes verifying and Case 2 occurring is strictly less
than e−λ.

So overall, the probability of all the challenge votes verifying is less than e−λ + ν(λ), and
thus the probability that Σ verifies is less than e−λ + ν(λ). Since ν(λ) is negligible in λ,
e−λ + ν(λ) is also negligible in λ.

113

Appendix C

Proofs for the Private Stream
Searching Scheme

Here we provide proofs for Lemma 3.3.2, Lemma 3.3.3, and Theorem 3.3.6, which ap-
peared in Section 3.3.

C.1 Singularity Probability of Pseudo-random Matrices

Lemma 3.3.2. Let G : KG×Z×Z→ {0, 1} be a (ωt, ωq, ε/8)-secure pseudo-random function

family. Let g = Gk, where k
R←− KG. Let `F = o(log(1/ε)) such that an `F × `F random

(0, 1)-matrix is singular with probability at most ε/4. Then the matrix

A =
[
g(i, j)

]
i=1,...,`F
j=1,...,`F

is singular with probability at most ε/2.

Proof. We know that an `F × `F random (0, 1)-matrix is singular with probability at most
ε/4. However, in our scheme, A is not a random matrix, but a matrix constructed using the
pseudo-random function g. Thus, we need the additional proof step to show that the matrix
A we constructed using the pseudo-random function g also satisfies the non-singular property
with overwhelming probability, otherwise, we could break the pseudo-random function. This
proof step is as follows.

Now assume for contradiction that the matrix A is singular with probability greater than
ε/2. Then we show that we can construct an adversary B (relative to the pseudo-random
function family G) with AdvB > ε/8 with polynomial number of queries and polynomial
time, thus contradicting the original assumptions of G.

To do so, we play the following game. We flip a coin θ ∈ {0, 1} with a half and half
probability, the adversary B is given one of two worlds in which it can make a number of

APPENDIX C. PROOFS FOR THE PRIVATE STREAM SEARCHING SCHEME 114

queries to a given oracle. If θ = 1, B is given world one, where g = Gk, k
R←− KG, and the

oracle responds to a query (i, j) with g(i, j). If θ = 0, the adversary B is given world two,
where the oracle responds to a query (i, j) by picking a random function R mapping (i, j) to
{0, 1}, i.e., by flipping a coin b ∈ {0, 1} with a half and half probability and returning b (using
a table of previous queries to ensure consistency). After a series of queries, the adversary B
guesses which world it is in. The adversary B makes its guess using the following strategy:
First, the adversary B constructs a matrix A by querying the oracle for all (i, j) where
i ∈ {1, . . . , `F} and j ∈ {1, . . . `F}; then the adversary B checks if A is singular. If yes, it
guesses that it is in world one. If not, it guesses that it is in world two.

Thus, we can compute the advantage of such an adversary B.

AdvB =
∣∣P (Bg = 1)− P

(
BR = 1

)∣∣ =

∣∣∣∣12P (A is singular|θ = 1)− 1

2
P (A is singular|θ = 0)

∣∣∣∣ .
From the above assumptions, P (A is singular|θ = 1) > ε/2, and P (A is singular|θ = 0) <

ε/4, thus AdvB > ε/8, contradicting the original assumptions of G.

C.2 Bounding False Positives

Lemma 3.3.3. Given `F > m + 8 ln(2/ε), let `I = O(m log(t/m)) and assume the number
of matching files is at most m out of a stream of t. Then the probability that the number of
reconstructed matching indices β is greater than `F is at most ε/2.

Proof. The number of reconstructed matching indices β equals the number of truly matching
files plus the number of false positives from the reconstruction using the Bloom filter. Thus,
we need to bound this number of false positives to be at most `F −m.

The false positive rate ρ of the Bloom filter storing m entries is as follows [21].

ρ =

(
1

2

) `I log 2

m

(C.1)

Thus, the expectation of the number of false positives is ρt. For simplicity, let’s set
ρt = (`F −m)/2, which corresponds to the number of false positives filling about half the
extra space on average. This choice is somewhat arbitrary, but it suffices to allow the proof
to go through. So now `I = m(log 2)−2 log(2t

`F−m
). Since `F is set to be linear in m, with

`I = O(m log(t/m)) the expected number of false positives can be bounded far from `F .
Moreover, we can model the number of false positives with a binomial random variable

X with rate parameter ρ and approximate it with a Gaussian centered at the expected
number of false positives. From Chernoff bounds, we can derive that P (X > `F −m) <
exp(−(`F − m)/8). Thus, with `F > m + 8 ln(2/ε), we can show that this probability is
bounded by ε/2. Thus, we show that the above lemma holds.

APPENDIX C. PROOFS FOR THE PRIVATE STREAM SEARCHING SCHEME 115

C.3 Semantic Security

Here we provide a proof of the semantic security of the proposed private searching system
assuming the semantic security of the Paillier cryptosystem. The proof is simple; in fact
it proceeds in the same way as the proof of semantic security in Ostrovsky and Skeith’s
scheme [72]. The same proof applies whether we are using encrypted queries of the original
form proposed by Ostrovsky and Skeith or the hash table queries we propose as an extension
in Section 3.4.

Theorem 3.3.6. If the Paillier cryptosystem is semantically secure, then the proposed pri-
vate searching scheme is semantically secure according to the definition in Section 1.4.

Proof. We assume there is an adversary A that can play the game described in the definition
with non-negligible advantage ε in order to show that we then have non-negligible advantage
in breaking the security of the Paillier cryptosystem.

First we initiate a game with the Paillier challenger, receiving public key n. We choose
plaintexts m0,m1 ∈ ZN to be simply m0 = 0 and m1 = 1. We return them to the Paillier
challenger who secretly flips a coin β1 and sends us E (mβ1).

Now we initiate a game with A and send it the modulus n, challenging it to break
the semantic security of the private searching system. The adversary sends us two sets of
keywords, K0 and K1. We flip a coin β2 and construct the query Qβ2 by passing Kβ2 to
Query. Next we replace all the entries in Qβ2 which are encryptions of one with E (mβ1),
re-randomizing each time by multiplying by a new encryption of zero. Note that with
probability one half, β1 = 0 and Qβ2 is a query that searches for nothing. In this case β2 has
no influence on Qβ2 since Qβ2 consists solely of uniformly distributed encryptions of zero.
Otherwise, Qβ2 searches for Kβ2 .

Next we give Qβ2 to A. After investigation, A returns its guess β′2. If β′2 = β2, we let the
guess for our challenge be β′1 = 1 and return it to the Paillier challenger. Otherwise we let
β′1 = 0 and send it to the Paillier challenger.

Since A is able to break the semantic security of the private searching system, if β1 = 1
the probability that β′2 = β2 is 1

2
+ ε, where ε is a non-negligible function of the security

parameter n. If β1 = 0, then P (β′2 = β2) = 1
2
, since β2 was chosen uniformly at random and

it had no bearing on the choice of β′2. Now we may compute our advantage in our game with
the Paillier challenger as follows.

P (β′1 = β1) = P (β′1 = 1|β1 = 1)
1

2
+ P (β′1 = 0|β1 = 0)

1

2

=
(1

2
+ ε
)1

2
+

1

2
· 1

2

=
1

2
+
ε

2

Since ε is non-negligible, so is ε
2
.

117

Appendix D

Details of the Stylometric Features

In this appendix, we provide some supplementary information about the stylometric
features discussed in Section 5.3.

D.1 List of Function Words

Listed below are the 293 function words referenced in Table 5.1. The words “a” through “I”
are shown here; the remainder of the list appears on the following page.

a amidst away by either from

able among bar can enough front

aboard amongst barring certain every given

about amount be circa everybody good

above an because close everyone great

absent and been concerning everything had

according another before consequently except half

accordingly anti behind considering excepting have

across any being could excluding he

after anybody below couple failing heaps

against anyone beneath dare few hence

ahead anything beside deal fewer her

albeit are besides despite fifth hers

all around better down first herself

along as between due five him

alongside aside beyond during following himself

although astraddle bit each for his

am astride both eight four however

amid at but eighth fourth I

APPENDIX D. DETAILS OF THE STYLOMETRIC FEATURES 118

if myself over so till whereas

in near part some time wherever

including need past somebody to whether

inside neither pending someone tons which

instead nevertheless per something top whichever

into next pertaining spite toward while

is nine place such towards whilst

it ninth plenty ten two who

its no plethora tenth under whoever

itself nobody plus than underneath whole

keeping none quantities thanks unless whom

lack nor quantity that unlike whomever

less nothing quarter the until whose

like notwithstanding regarding their unto will

little number remainder theirs up with

loads numbers respecting them upon within

lots of rest themselves us without

majority off round then used would

many on save thence various yet

masses once saving therefore versus you

may one second these via your

me onto seven they view yours

might opposite seventh third wanting yourself

mine or several this was yourselves

minority other shall those we

minus ought she though were

more our should three what

most ours similar through whatever

much ourselves since throughout when

must out six thru whenever

my outside sixth thus where

D.2 Additional Information Gain Results

In Section 5.3, Table 5.2 lists the top ten features by information gain. On the following
page, we provide an extended version of this table which lists the top thirty. Note that the
features “frequency of .” and “frequency of S-.” are not identical. The latter only counts
periods as a sentence terminator, but the former also counts other usages of that character,
such as the decimal point. A similar remark applies to the features “frequency of ,” and
“frequency of S-,”.

APPENDIX D. DETAILS OF THE STYLOMETRIC FEATURES 119

Feature Information Gain in Bits

Frequency of ’ 1.09666
Number of characters 1.07729
Frequency of words with only first letter uppercase 1.07275
Number of words 1.06049
Frequency of NP-PRP (noun phrase containing a personal pronoun) 1.03198
Frequency of . 1.02163
Frequency of all-lowercase words 1.01787
Frequency of NP-NNP (noun phrase containing a singular proper noun) 1.00869
Frequency of all-uppercase words 0.99070
Frequency of , 0.94705
Frequency of S-. (sentence ending with a period) 0.94122
Frequency of ROOT-S (top-level clause is a declarative sentence) 0.91683
Frequency of one-character words 0.88404
Frequency of S-, (sentence containing a comma) 0.88381
Frequency of NP-PP (noun phrase containing a prepositional phrase) 0.87979
Frequency of ten-character words 0.87763
Frequency of S-VP (sentence containing a verb phrase) 0.87529
Frequency of - 0.87469
Frequency of S-NP (sentence containing a noun phrase) 0.87010
Frequency of nine-character words 0.86612
Frequency of PP-NP (prepositional phrase containing a noun phrase) 0.86540
Frequency of NP-NP (noun phrase containing a noun phrase) 0.86343
Frequency of words occurring once in a post (hapax legomena) 0.85528
Frequency of S-CC (sentence containing a coordinating conjunction) 0.85402
Frequency of VP-VBP

0.85394(verb phrase containing a present tense verb, not third person singular)
Frequency of PP-IN

0.85338(prepositional phrase containing a subordinating preposition or conjunction)
Frequency of S-S

0.85133(sentence containing an independent clause, i.e., a compound sentence)
Frequency of ADVP-RB

0.85099(adverb phrase containing an adverb, not comparative or superlative)
Frequency of eleven-character words 0.85038
Frequency of the word “my” 0.84940

